Return to search

Context-based Multimodal Machine Learning on Game Oriented Data for Affective State Recognition / Kontextbaserad multimodal maskininlärning på spelorienterad data för affektivt tillståndsigenkänning

Affective computing is an essential part of Human-Robot Interaction, where knowing the human’s emotional state is crucial to create an interactive and adaptive social robot. Previous work has mainly been focusing on using unimodal or multimodal sequential models for Affective State Recognition. However, few have included context-based information with their models to boost performance. In this paper, context-based features are tested on a multimodal Gated Recurrent Unit model with late fusion on game oriented data. It shows that using context-based features such as game state can significantly increase the performance of sequential multimodal models on game oriented data. / Affektiv beräkning är en viktig del av interaktion mellan människa och robot, där kunskap om människans emotionella tillstånd är avgörande för att skapa en interaktiv och anpassningsbar social robot. Tidigare arbete har främst fokuserat på att använda unimodala eller multimodala sekventiella modeller för affektiv tillståndsigenkänning. Men få har inkluderat kontextbaserad information i sin inställning för att öka prestanda. I denna uppsats testas kontextbaserade funktioner på en multimodal s.k. Gated Recurrent Unit modell med sen fusion på spelorienterad data. Det visar att användning av kontextbaserade information som tillståndet i spelet kan avsevärt öka prestandan hos sekventiella multimodala modeller på spelorienterad data.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-304420
Date January 2021
CreatorsCorneliussen, Ilian
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:628

Page generated in 0.0015 seconds