Return to search

Transformation of In-Flight Measured Loads to a Fatigue Test Spectrum / Omvandling av uppmätta flygprovlaster till lastspektra för utmattningsprov

Fatigue is a well-recognized issue in lightweight and high-performance aircraft structures. As fatigue failures have led to serious accidents and caused significant economic impact in the past, design against fatigue is crucial. Fatigue testing of full-scale aircraft as well as components is an important tool for the advance identification of potential fatigue issues in both new and operational aircraft. Furthermore, coupon testing is used extensively to obtain allowables for materials and structural details to be used in the design process. To obtain accurate results from fatigue testing, not only the test object but also the used load spectrum must accurately represent reality. If the aircraft is operational, an accurate load spectrum can be obtained by measuring the loads in-flight during a sufficiently long period of normal operation of the aircraft. However, the in-flight measured loads data contains an extraordinarily large number of cycles, resulting in long and uneconomical test durations. This thesis aims to propose a method for the selection of an optimal filtering level for fatigue test spectra developed from in-flight measured loads. The thesis also discusses and recommends methods for in-flight measurement of loads, cycle counting as well as damage evaluation using a crack-growth approach. Furthermore, ways to validate the proposed method and its practical application are discussed. An example filtering study is conducted using four different specimens chosen to represent typical structural details of aircraft. The study uses real in-flight measured loads of a light aircraft and also discusses temperature compensation of the loads data. The effect of filtering on fatigue damage is evaluated using crack-growth simulations conducted at a range of filtering and stress levels.  The results show that a remarkable reduction of testing time is possible and as many as 99 % of all cycles in the studied flight load history can be discarded without significantly reducing fatigue damage. The allowable filtering level is shown to differ between the specimens and the different stages of fatigue crack growth. In addition, the applied stress level is found to have a consistent effect on the allowable filtering level.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-190672
Date January 2022
CreatorsDümig, Patrick
PublisherLinköpings universitet, Mekanik och hållfasthetslära
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0046 seconds