La présente thèse porte sur le développement d'une théorie d'algèbre linéaire, de géométrie et d'analyse basée sur les algèbres (Z2)n-commutatives, c'est-à-dire des algèbres (Z2)n-graduées associatives unitaires satisfaisant ab = (-1)<deg(a),deg(b)>ba, pour tout couple d'éléments homogènes a, b de degrés deg(a), deg(b) où <.,.> est le produit scalaire usuel). Cette généralisation de la supergéométrie a de nombreuses applications : en mathématiques (l'algèbre de Deligne des superformes différentielles, l'algèbre des quaternions et les algèbres de Clifford en sont des exemples) et même en physique (paraparticules). Dans ce travail, les notions de trace et de (super)déterminant pour des matrices à coefficients dans une algèbre gradué-commutative sont définies et étudiés. Une attention particulière est portée au cas des algèbres de Clifford : ce point de vue gradué fournit une nouvelle approche au problème classique du « bon » déterminant pour des matrices à coefficient non-commutatifs (quaternioniques). En outre, nous entreprenons l'étude de la géométrie différentielle (Z2)n-graduée. Privilégiant l'approche par les espaces annelés, les (Z2)n-supervariétés sont définies en choisissant l'algèbre (Z2)n-commutative des séries formelles en variables graduées comme modèle pour le faisceau de fonctions. Les résultats les plus marquants ainsi obtenus sont : le Berezinien gradué et son interprétation cohomologique (essentielle pour établir une théorie de l'intégration) ; le théorème des morphismes, attestant qu'on peut rétablir un morphisme entre (Z2)n-supervariétés à partir de sa seule expression sur les coordonnées ; le théorème de Batchelor-Gawedzki pour les (Z2)n-supervariétés lisses / The present thesis deals with a development of linear algebra, geometry and analysis based on (Z2)n-superalgebras ; associative unital algebras which are (Z2)n-graded and graded-commutative, i.e. statisfying ab=(-1)<deg(a),deg(b)>ba, for all homogeneous elements a, b of respective degrees deg(a), deg(b) in (Z2)n (<.,.> denoting the usual scalar product). This generalization widens the range of applications of supergeometry to many mathematical structures (quaternions and more generally Clifford algebras, Deligne algebra of superdifferential forms, higher vector bundles) and appears also in physics (for describing paraparticles) proving its worth and relevance. In this dissertation, we first focus on (Z2)n-superalgebra theory ; we define and characterize the notions of trace and (super)determinant of matrices over graded-commutative algebras. Special attention is given to the case of Clifford algebras, where our study gives a new approach to treat the classical problem of finding a “good” determinant for matrices with noncommuting (quaternionic) entries. Further, we undertake the study of (Z2)n-graded differential geometry. Privileging the ringed space approach, we define (smooth) (Z2)n-supermanifolds modeling their algebras of functions on the (Z2)n-commutative algebra of formal power series in graded variables, and develop the theory along the lines of supergeometry. Notable results are : the graded Berezinian and its cohomological interpretation (essential to establish integration theory) ; the theorem of morphism, which states that a morphism of (Z2)n-supermanifolds can be recovered from its coordinate expression ; Batchelor-Gawedzki theorem for (Z2)n-supermanifolds
Identifer | oai:union.ndltd.org:theses.fr/2014LYO10203 |
Date | 30 September 2014 |
Creators | Covolo, Tiffany |
Contributors | Lyon 1, Université du Luxembourg. Faculté des sciences, de la technologie et de la communication, Ovsienko, Valentin, Poncin, Norbert |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds