• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

(Z2)n-Superalgebra and (Z2)n-Supergeometry / (Z2)n-Superalgèbre and (Z2)n-Supergéométrie

Covolo, Tiffany 30 September 2014 (has links)
La présente thèse porte sur le développement d'une théorie d'algèbre linéaire, de géométrie et d'analyse basée sur les algèbres (Z2)n-commutatives, c'est-à-dire des algèbres (Z2)n-graduées associatives unitaires satisfaisant ab = (-1)<deg(a),deg(b)>ba, pour tout couple d'éléments homogènes a, b de degrés deg(a), deg(b) où <.,.> est le produit scalaire usuel). Cette généralisation de la supergéométrie a de nombreuses applications : en mathématiques (l'algèbre de Deligne des superformes différentielles, l'algèbre des quaternions et les algèbres de Clifford en sont des exemples) et même en physique (paraparticules). Dans ce travail, les notions de trace et de (super)déterminant pour des matrices à coefficients dans une algèbre gradué-commutative sont définies et étudiés. Une attention particulière est portée au cas des algèbres de Clifford : ce point de vue gradué fournit une nouvelle approche au problème classique du « bon » déterminant pour des matrices à coefficient non-commutatifs (quaternioniques). En outre, nous entreprenons l'étude de la géométrie différentielle (Z2)n-graduée. Privilégiant l'approche par les espaces annelés, les (Z2)n-supervariétés sont définies en choisissant l'algèbre (Z2)n-commutative des séries formelles en variables graduées comme modèle pour le faisceau de fonctions. Les résultats les plus marquants ainsi obtenus sont : le Berezinien gradué et son interprétation cohomologique (essentielle pour établir une théorie de l'intégration) ; le théorème des morphismes, attestant qu'on peut rétablir un morphisme entre (Z2)n-supervariétés à partir de sa seule expression sur les coordonnées ; le théorème de Batchelor-Gawedzki pour les (Z2)n-supervariétés lisses / The present thesis deals with a development of linear algebra, geometry and analysis based on (Z2)n-superalgebras ; associative unital algebras which are (Z2)n-graded and graded-commutative, i.e. statisfying ab=(-1)<deg(a),deg(b)>ba, for all homogeneous elements a, b of respective degrees deg(a), deg(b) in (Z2)n (<.,.> denoting the usual scalar product). This generalization widens the range of applications of supergeometry to many mathematical structures (quaternions and more generally Clifford algebras, Deligne algebra of superdifferential forms, higher vector bundles) and appears also in physics (for describing paraparticles) proving its worth and relevance. In this dissertation, we first focus on (Z2)n-superalgebra theory ; we define and characterize the notions of trace and (super)determinant of matrices over graded-commutative algebras. Special attention is given to the case of Clifford algebras, where our study gives a new approach to treat the classical problem of finding a “good” determinant for matrices with noncommuting (quaternionic) entries. Further, we undertake the study of (Z2)n-graded differential geometry. Privileging the ringed space approach, we define (smooth) (Z2)n-supermanifolds modeling their algebras of functions on the (Z2)n-commutative algebra of formal power series in graded variables, and develop the theory along the lines of supergeometry. Notable results are : the graded Berezinian and its cohomological interpretation (essential to establish integration theory) ; the theorem of morphism, which states that a morphism of (Z2)n-supermanifolds can be recovered from its coordinate expression ; Batchelor-Gawedzki theorem for (Z2)n-supermanifolds
2

Algèbres de Clifford conformes et orbites de points de vue d'images / Conformal Clifford algebras and image viewpoints orbit

El Mir, Ghina 09 July 2014 (has links)
L'objectif de ce travail est de décrire des modélisations des points de vue et des changements de points de vue d'images d'un objet planaire dans les algèbres de Clifford conformes. Nous généralisons le modèle conforme de l'espace euclidien à travers une famille à deux paramètres d'horosphère, chacune d'entre elles étant plongée dans un espace vectoriel réel de dimension 4 muni d'une métrique équivalente à la métrique de Minkowski. Nous décrivons par la suite deux approches pour mettre en œuvre ces modèles conformes généralisés pour les représentations d'images. L'idée de base est d'encoder les distorsions perspectives de l'objet causées par la variation du paramètre de latitude de la caméra au travers des paramètres d'une horosphère. La première approche consiste à considérer les horosphères de l'espace de Minkowski de dimension 4 pour encoder les points de vue. Les changements de points de vue sont alors linéarisés à travers un groupe de transformations linéaires et conformes de cet espace. Cette approche est ensuite généralisée en décrivant les points de vue à travers les objets d'un groupoïde dont les morphismes sont des diagrammes commutatifs qui représentent les changements de points de vue. Ainsi, une image conforme est décrite par une application définie sur une horosphère à deux paramètres. L'action du groupoïde sur l'ensemble des images conformes nous conduit à associer à tout objet planaire l'orbite de toutes ses images conformes obtenues à partir de tous les points de vue. / Our purpose in this work is to introduce representations of image viewpoints and viewpoint changes of a planar object in conformal Clifford algebras. Our important preliminary contribution is a generalization of the conformal model of the Euclidean space through a two-parameter family of horospheres. Each one of these is embedded into a real vector space of dimension 4 equipped with a metric equivalent to the Minkowski metric. We describe two approaches that make use of these generalized conformal models for image representations. These are based on modelings of perspective distortions of the object caused by a variation of the latitude angle of the camera. First, we model the image viewpoints by the horospheres of the Minkowski space of dimension 4. In this setting, the viewpoint changes are linearized through a group of linear conformal transformations of this space. This approach is generalized by describing the viewpoints through the objects of a groupoid whose morphisms are commutative diagrams that model the viewpoint changes. A conformal image is then described as a map defined on a horosphere. The action of the groupoid on the set of conformal images leads us to associate with every planar object the orbit of its conformal images from all viewpoints.

Page generated in 0.067 seconds