Return to search

American Football : A Markovian Approach / Amerikansk fotboll med Markovkedjor

This bachelor's thesis in applied mathematics & industrial economics is an attempt to model drives in American football using Markov chains. The transition matrix is obtained through logit regression analysis on historical data from the NFL. Different outcomes of drives are modelled as separate absorbing states in the Markov chain. Absorption probabilities are calculated representing the probabilities of each outcome. Results are tested against a Markov chain with the transition matrix based on frequency analysis. Three scoring rules unanimously declare the regression based model to be superior. The application of the model pertains to live sports betting. With the insight provided by the Markovian model, a bettor should be able to make statistically informed betting decisions. The prospect of creating a start-up based on the Markovian betting model is discussed. / Denna kandidatuppsats i tillämpad matematik & industriell ekonomi är ett försök till att modellera drives i amerikansk fotboll med hjälp av Markovkedjor. Övergångsmatrisen fås genom logit-regressionsanalys av historisk data från NFL. Olika utfall av drives modelleras som separata absorberande tillstånd i Markovkedjan. Absorptionssannolikheter beräknas, vilka representerar sannolikheterna för de olika utfallen. Resultaten testas mot en Markovkedja där övergångsmatrisen fås genom frekvensanalys. Tre olika poängregler föredrar enhälligt den regressionsbaserade modellen. Modellens tillämpning berör sportbetting. Med hjälp av Markovmodellen bör en spelare kunna ta statistiskt underbyggda beslut i deras betting. Möjligheterna att skapa ett företag baserat på Markovmodellen diskuteras.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-188987
Date January 2016
CreatorsLarsson, Joakim, Sjökvist, Henrik
PublisherKTH, Matematisk statistik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-MAT-K ; 2016:23

Page generated in 0.0019 seconds