L’amertume fait partie intégrante de notre alimentation. Elle est par exemple fortement représentée dans certaines boissons (ex: café) ou dans certains légumes tels les crucifères. Néanmoins, la perception de l’amertume varie entre les individus et certains aliments considérés comme bénéfiques pour la santé peuvent être rejetés en raison de leur goût amer. Des facteurs génétiques (ex : polymorphisme génétique des récepteurs du goût amer) ou environnementaux (ex : âge, prise de médicaments) expliquent en partie les variations interindividuelles dans la perception de l’amertume. Cependant, d’autres facteurs péri-récepteurs pourraient intervenir, notamment la composition salivaire. Afin d’investiguer dans un premier temps le lien existant entre le protéome salivaire propre à un individu et sa sensibilité à l’amertume, le seuil de détection du goût amer de la caféine a été mesuré sur 29 hommes sains. Leur salive au repos a été étudiée par électrophorèse mono- et bidimensionnelle. L’analyse par électrophorèse bidimensionnelle de la salive au repos des 6 sujets les plus sensibles et 6 les sujets les moins sensibles à la caféine a permis la détection de 255 spots, dont 26 étaient significativement différents entre hyper- et hyposensibles. L’identification de ces 26 spots a révélé la surexpression de fragments d’alpha amylase, de fragments d’albumine sérique, et de sous-unités alpha de l’immunoglobuline A ainsi que la sous-expression de cystatine SN chez les hypersensibles. Ce dernier résultat a été confirmé par Western Blot. Ceci a permis de formuler une hypothèse sur le rôle de la protéolyse en bouche sur la sensibilité à l’amertume. Dans un deuxième temps et afin d’étudier l’effet des molécules amères sur la composition salivaire, une étude in vitro a été menée sur la lignée cellulaire de glandes salivaires humaines HSG différenciées en acini ou non. Après une mise au point des conditions de différenciation (culture dite en 3D), la cystatine SN a été détectée dans les cellules HSG par Western blot après traitement des cellules à la caféine, à la quinine, et à l’urée. Après traitement à la caféine à 5, 50 ou 100µM, une quantification par ELISA a mis en évidence que la cystatine SN était toujours plus abondante dans les cellules HSG différenciées que dans les cellules non-différenciées. Spécifiquement dans les cellules différenciées, l’exposition à la caféine induisait une sur-expression de cystatine SN, la teneur maximale en cystatine SN étant observée avec la caféine à 50 µM. La présence de cystatine SN a également été détectée dans les milieux de culture / Bitterness is present in every day beverages (e.g. coffee) and foods (e.g. vegetables such as cruciferous plants). However, bitterness is perceived differently among individuals and some foods considered as healthy may be rejected due to their bitter taste. Several genetic (eg. genetic polymorphism of bitter taste receptors) or environmental (eg. age, medications) factors partly explain the interindividual variability in bitterness perception. However, other peri-receptor factors may intervene, in particular salivary composition. First, in order to investigate the link between salivary proteome and sensitivity to bitterness, the detection threshold to the bitter taste of caffeine was measured in 29 male healthy subjects. Their resting saliva was studied by one- and two-dimensional electrophoresis. Two-dimensional electrophoresis revealed that 26 out of 255 spots were significantly different between the 6 hypersensitive and 6 hyposensitive subjects to the bitter taste of caffeine. Identification of the 26 spots revealed an overexpression of amylase-, serum albumin-, and immunoglobulin A fragments, and an underexpression of cystatin SN in hypersensitive subjects. The latter finding was confirmed by Western blotting. These results have led to formulate an hypothesis on the role of in-mouth proteolysis in bitterness perception. Second, in order to study the effect of bitter molecules on salivary composition, an in vitro study was performed on undifferentiated and differentiated human salivary cell line HSG. After setting the experimental conditions for HSG cell differentiation (culture in 3D conditions), cystatin SN was detected in HSG cells by Western blot after treatment with caffeine, quinine, and urea. After cell exposure with caffeine at 5, 50 and 100 µM, quantification by ELISA demonstrated that cystatin SN was always more abundant in differentiated vs undifferentiated HSG cells. Specifically in differentiated cells, caffeine exposure resulted in over-expression of cystatin SN, 50µM inducing the highest effect. Cystatin SN was also detected in culture media of the HSG cells
Identifer | oai:union.ndltd.org:theses.fr/2012DIJOS099 |
Date | 18 December 2012 |
Creators | Dsamou, Micheline |
Contributors | Dijon, Chagnon, Marie-Christine, Morzel, Martine |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.003 seconds