<p>To facilitate indoor air quality (IAQ) monitoring, the research described herein develops and implements methods for the electronic integration of two types of gas sensor, each functionalized with a polymer blend tailored for CO<sub>2</sub> detection. A highly sensitive and tunable electronic chemiresistive sensor interface was developed and experimentally validated. This device achieved analog-to-digital conversion (ADC) through a pulse width modulated (PWM) signal, temporary data storage with an efficient data buffering system, and noise reduction and signal amplification utilizing an instrumentation amplifier integrator circuit. These techniques can used beyond CO<sub>2</sub>-specific applications to compensate for certain undesirable chemiresistive sensor characteristics, such as low response magnitude and signal noise. Additionally, resonant mass sensing circuitry was combined with an on-chip field programmable gate array (FPGA) implemented frequency counter. Hz-level resolution was achieved with an Alorium Snō FPGA board and a Verilog data acquisition and communication program. This device can monitor up to 16 sensor channels simultaneously and has a straightforward interface with a controllable output. Furthermore, the functionality of each integrated sensor was experimentally validated. With additional work, these integrated designs have the potential to be inexpensive, low-power, highly sensitive devices that are suitable for practical use in IAQ monitoring applications.</p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/20076314 |
Date | 15 June 2022 |
Creators | Joseph R Meseke (12879041) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/Integrated_Electronic_Interface_Design_for_Chemiresistive_and_Resonant_Gas_Sensors/20076314 |
Page generated in 0.0043 seconds