• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 28
  • 18
  • 12
  • 9
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 148
  • 148
  • 148
  • 48
  • 47
  • 46
  • 38
  • 34
  • 33
  • 30
  • 30
  • 28
  • 27
  • 26
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On-line parameter identification of induction machines for vector controlled drives

Mao, Shenjian January 1998 (has links)
No description available.
2

Evaluation of the variable rate capabilities of a sprayer equipped with pulse width modulation nozzle control and direct chemical injection systems

Walker, William 10 December 2021 (has links) (PDF)
Variable-rate technologies coupled with broadcast spray systems serve to reduce chemical inputs, misapplication of chemicals, and environmental pollution, thus improving profitability and sustainability. Sprayer variable rate control involves using pulse width modulation (PWM) solenoids and/or direct chemical injection to adjust the application rate. The objectives of this research were to: outfit a conventional broadcast sprayer with PWM and direct inject technologies; evaluate the accuracy of the PWM system to control application rate for strait line and turn segments; and characterize the direct injection system’s transport delay time. For the PWM evaluation, the mean flow rate and coefficient of variation of individual nozzles indicated consistent performance. For the direct injection evaluation, the manufacturer recommended plumbing scheme and injection point location resulted in unsatisfactory delay times, ranging from 105 to 150s for the 8 km h-1 (5 mph) speed and 60 to 90s for the 16 km h-1 (10 mph) speed.
3

Computer controlled generation of PWM waveform using harmonic distortion minimization scheme

Dalvi, Mahesh January 1997 (has links)
No description available.
4

Efficient Driver for Dimmable White LED Lighting

Yang, Wen-ching 25 July 2011 (has links)
A high efficiency driver circuit is proposed for Light Emitting Diode (LED) lamps with dimming feature. The current regulation is accomplished by processing partial power of the power conversion circuit so that a high overall efficiency can be realized. The detailed description and analysis of circuit operation are provided. The dimming feature can be accomplished by means of linear current regulation, pulse-width modulation (PWM) or double pulse-width modulation (DPWM). Based on the circuit analyses and derived equations, a laboratory circuit is designed for an LED lamp which is composed of 40 high-brightness white LEDs in series. The performances with three dimming schemes are compared from the measured results. LEDs dimmed by DPWM have less color shift than those dimmed by linear current regulation and PWM. On the other hand, the dimming scheme with linear current regulation has the highest light efficiency over the entire dimming range. The circuit efficiency can be as high as 95.5% at the rated output and deteriorates slightly to 90.5% as the lamp is dimmed to 10% of the rated power.
5

Investigations On Multilevel Inverter Topologies And Modulation Schemes For Induction Motor Drives

Baiju, M R 05 1900 (has links) (PDF)
No description available.
6

A Biotelemetry Unit for Monitoring Nocturnal Bruxism

Hirsh, S. S. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1992 / Town and Country Hotel and Convention Center, San Diego, California / This paper describes a biotelemetric application whereby information of tooth contact pressure from within the mouth of a human subject is transmitted to a bedside receiver where it is processed and used in the biofeedback treatment of nocturnal bruxism (grinding of the teeth). Bruxing information is encoded on a pulse width modulated 313 MHZ carrier. Issues that are addressed include miniaturization of the transmitter, minimization of power requirements, stabilization of carrier frequency, receiver selection, and the various problems associated with getting a radio frequency signal out of the mouth.
7

Study on Pulsewidth Modulation Techniques for a Neutral-Point-Clamped Voltage Source Inverter

Das, Soumitra January 2012 (has links) (PDF)
Neutral-point-clamped (NPC) three-level inverter is capable of handling higher dc bus voltage and producing output waveform of better quality than a conventional two-level inverter. The main objective of the present work is to analyze the existing PWM schemes for two-level and three-level inverters in terms of line current ripple, and to design new PWM techniques for the NPC inverter to reduce line current distortion. Various discontinuous PWM or bus-clamping PWM (BCPWM) methods for a two-level voltage source inverter are analyzed in terms of rms line current ripple, which is evaluated by integrating the error voltage (i.e. error between the applied and reference voltages). The BCPWM schemes can be broadly classified into continual-clamp PWM (CCPWM) and split-clamp PWM (SCPWM). It is shown that split-clamp PWM scheme leads to lower harmonic distortion than CCPWM scheme. Further, advanced bus-clamping PWM (ABCPWM) methods for a two-level inverter are also studied. These methods clamp each phase to the positive and negative DC terminals over certain intervals as in BCPWM schemes, and also switch each phase at double the nominal frequency in certain other intervals unlike in BCPWM. Analytical closed-form expressions are derived for the total rms harmonic distortion due to SCPWM, CCPWM and ABCPWM schemes. Existing sinusoidal and bus-clamping PWM schemes for three-level NPC inverters are also analyzed in the space vector domain. These methods are compared in terms of line current ripple analytically as well as experimentally. As earlier, closed-form expressions are derived for the harmonic distortion factors corresponding to centered space vector PWM (CSVPWM) and the various BCPWM methods. A three-level inverter can be viewed as an equivalent two-level inverter in each sixth of the fundamental cycle or hextant. This is widely used to simplify the control of an NPC inverter. Further, this approach makes it simple to extend the BCPWM and ABCPWM methods for two-level inverters to three-level inverters. Furthermore, the method of analysis of line current ripple for the two-level inverter can also be easily extended to the three-level case. The pivot vector, which is half the length of the longest voltage vectors produced by the NPC inverter, acts as an equivalent null vector for the conceptual two-level inverter. Each pivot vector can be produced by two inverter states termed as “pivot states”. Typically, in continuous modulation methods for NPC inverter such as sinusoidal PWM and centered space vector PWM, the switching sequence (i.e. the sequence in which the voltage vectors are applied) begins and ends with the same pivot vector in each subcycle, which is equivalent to a half-carrier cycle. To be more precise, the switching sequence starts with one pivot state and ends with the other in each subcycle. However, in case of BCPWM schemes, only one pivot state is used in a subcycle. The choice of pivot state results in a variety of BCPWM schemes for an NPC inverter. Different BCPWM schemes are evaluated in terms of rms line current ripple. The optimal BCPWM, which minimizes the rms current ripple, is determined for an NPC inverter, controlled as an equivalent two-level inverter. Further, four new switching sequences are proposed here for a three-level inverter, controlled as a conceptual two-level inverter. These sequences apply the pivot vector only once, but employ one of the other two vectors twice within the subcycle. These four switching sequences are termed as “ABCPWM sequences” for three-level inverter. These sequences exploit the flexibility available in the space vector approach to PWM to switch a phase more than once in a subcycle, which results in the application of an active vector twice within the subcycle. Influence of the proposed ABCPWM sequences on the line current ripple over a subcycle is studied. The various sequences are compared in terms of rms line current ripple over a subcycle. An analytical closed-form expression for rms line current ripple over a subcycle is derived in terms of reference magnitude, angle of reference voltage vector, and subcycle duration for each of the sequences. Further, closed-form expressions are also derived for the rms current ripple over a line cycle in terms of modulation index and subcycle duration, corresponding to the various sequences. The four proposed ABCPWM sequences for the NPC inverter can be grouped into two pairs of sequences. Each pair of sequences is shown to perform better than the individual sequences, if the two sequences are employed in appropriate spatial regions. Hence, with these two pairs of sequences, two hybrid PWM schemes are proposed. Finally, a hybrid PWM technique is proposed which employs all five sequences (conventional and proposed four sequences) in spatial regions where each performs the best. This is termed as “five-zone hybrid PWM”. The total harmonic distortion (THD) in the motor current, pertaining to all the proposed schemes, is studied theoretically over the entire range of linear modulation. The theoretical investigations are validated experimentally on a 2.2 kW, 415V, 4.9A, 50 Hz induction motor drive. The no-load current THD is measured over a range of fundamental frequency from 10 Hz to 50 Hz in steps of 2 Hz for the various PWM methods. Theoretical and experimental results bring out the reduction in current THD due to the proposed BCPWM schemes at fundamental frequencies of 45 Hz and above, compared to CSVPWM. The ABCPWM methods improve the performance at higher as well as lower modulation indices. Further improvement is achieved with the proposed five-zone hybrid PWM. At the rated frequency (50 Hz) of the drive, the improvement in line current distortion is around 36% with this hybrid PWM scheme over CSVPWM. The reduction in THD is also experimentally verified at different loads on the motor. The difference between the top and bottom capacitor voltages is measured at various operating conditions, corresponding to CSVPWM and the proposed schemes. No significant difference is observed in the dc neutral voltage shifts with the different proposed schemes and CSVPWM method. Thus, the proposed methods improve the THD at low and high speed ranges without appreciable worsening of the dc voltage unbalance.
8

Application of pulse width modulation to a Western blotting device

TruongVo, ThucNhi January 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / One of the critical steps in a current Western blot technique is a blotting process, which in general requires one electrophoretic gel for every protein species to be analyzed. In most cases, multiple protein species are analyzed simultaneously and thus it is necessary for a scientist to run multiple gels. In order to make it possible to analyze multiple protein species from a single gel, a novel blotting device, BlotMan, was employed in this study. Designed by Dr. Chien’s group (YC Bioelectric), BlotMan uses pulse width modulation (PWM) for applying a protein size-dependent voltage during a blotting process. In this study, the differential average voltage profile, depending on protein size (e.g. 17 kDa to 140 kDa), was built and enabled BlotMan to transfer all protein species in equal efficiency regardless of the protein size. Furthermore, Blot- Man consists of a user-friendly, custom-made interface box, which can be remotely controlled by a smart phone. BlotMan’s capability was evaluated using standard protein markers, as well as protein samples that were isolated from chondrosarcoma cells (SW1353) and breast cancer cells (MDA-MB-213). The experimental results revealed that BlotMan was capable of generating 5 blotting membranes from a single gel simultaneously. Protein species such as c-Src, eukaryotic translation initiation factor 2 alpha (eIF2α) and its phosphorylated form (p-eIF2α), lamin B, and β-actin were successfully detected. It is also demonstrated that compared to a regular constant voltage, PWM signals improved transfer efficiency and a signal-to-noise ratio. In conclusion, this study demonstrated that BlotMan was able to facilitate Western blotting analysis by generating multiple blotting membranes from a single gel with an improved signal-to-noise ratio. Further analysis is recommended for understanding the mechanism of PWMts action on transfer efficiency and noise reduction.
9

Hybrid 2D-3D Space Vector Modulation For Three-Phase Voltage Source Inverter

Albatran, Saher 17 August 2013 (has links)
Three-phase voltage source inverters are increasingly employed in power systems and industrial applications. Various pulse width modulation strategies have been applied to control the voltage source inverters. This dissertation presents a hybrid 2D-3D space vector modulation algorithm for three-phase voltage source inverters with both three-wire and four-wire topologies. The voltage magnitude and phase angle of the inverters fundamental output phase voltage are precisely controlled under either balanced or unbalanced load conditions, and hence, the space vector algorithm offers synchronization controllability over generation control in distributed generation systems. The numerical efficiency and simplicity of the proposed algorithm are validated through conducting MATLAB/Simulink simulations and hardware experiments. Mathematical description and harmonic analyses of output phase voltages of three-phase voltage source inverter which employs a hybrid 2D-3D SVM are presented in this dissertation. Explicit time domain representation of the harmonic components in addition to the total harmonic distortion of the output phase voltages are given in terms of system and switching parameters. The dissertation also investigates the harmonic characteristics and low total harmonic distortion performance against the linearity of modulation region which helps in the harmonic performance and design studies of such inverters employing the hybrid 2D-3D SVM. Experimental results are used to validate these analyses. In addition, the performance and the harmonic contents of the inverter output phase voltage when applying the proposed hybrid 2D-3D SVM are compared to that obtained from conventional 2D SVM and 3D SVM. As a result, the proposed new algorithm shows advantages in terms of low total harmonic distortion and reduced harmonic contents in both three-wire and four-wire systems.
10

Single-stage high-power-factor electronic ballasts with buck-boost topology for fluorescent lamps

Cheng, Hung-Liang 19 June 2001 (has links)
Three novel single-stage electronic ballasts with the advantages of high-power-factor, low current harmonic, high efficiency, and low cost are proposed for rapid-start fluorescent lamps. Included are (1) single-stage high-power-factor electronic ballast with asymmetrical topology, (2) single-stage high- power-factor electronic ballast with symmetrical topology, and (3) single-stage single-switch high-power-factor electronic ballast. The circuit configurations are obtained by integrating the buck-boost power-factor-correction converter into the Class D or the Class E resonant inverter. With simple circuit configuration and less component count, desired circuit performances of high-power-factor and high efficiency are realized. The control methods of pulse-width-modulation (PWM) with asymmetrical and symmetrical approaches are utilized for the three presented ballasts. The buck-boost conversion stage is operated at discontinuous current mode (DCM) to achieve nearly unity power factor at a fixed switching frequency. With carefully designed circuit parameters, the power switches can exhibit either zero-voltage switching-on (ZVS) or zero-current switching-on (ZCS). As a result, high circuit efficiency can be ensured. Design equations are derived and computer analyses are performed based on the lamp¡¦s equivalent resistance model and fundamental approximation. Accordingly, design guidelines for determining circuit parameters are provided. Prototypes of the three proposed circuits designed for a T8-36W lamp, two series-connected T9-40W lamps and a PL-27W lamp are built and tested to verify the computer simulations and analytical predictions.

Page generated in 0.0841 seconds