Time-interleaved analog-to-digital converters are an attractive architecture for achieving a high speed, high resolution ADC in a power efficient manner. However, due to process and manufacturing variations, timing skews occur between the sampling clocks of the sub ADCs within the TI-ADC. These timing skews compromise the spurious free dynamic range of the converter. In addition, jitter on the sampling clocks, degrades the signal-to-noise ratio of the TI-ADC. Therefore, in order to maintain an acceptable spurious free dynamic range and signal to noise ratio, it is necessary to correct the timing skews while adding minimal jitter.
Two analog-based architectures for correcting timing skews were investigated, with one being selected for implementation. The selected architecture and additional test circuitry were designed and fabricated in a 0.18??m CMOS process and tested using a 125 MSPS 16 bit ADC. The circuit achieves a correction precision on the order of 10???s of femtoseconds for timing skews as large as approximately 180 picoseconds, while adding less than 200 femtoseconds of rms jitter.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OWTU.10012/8053 |
Date | 22 November 2013 |
Creators | Bray, Adam |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Page generated in 0.0018 seconds