On s'intéresse dans ce travail à différents modèles de transfert radiatif, décrivant les interactions entre la matière et les photons. Les radiations sont décrites en termes d'énergie et flux d'énergie, dans le cas macroscopique, le flfluide environnant est quant à lui décrit par les équations d'Euler (modèle d'hydrodynamique radiative). Dans le cas microscopique, le champ radiatif est vu comme une collection des photons interagissant avec la matière par des mécanismes d'absorption-émission. Ces mécanismes dépendent des états d'excitation interne et d'ionisation de la matière. On commence par monter l'existence locale de solutions régulières pour un système couplant les équations d'Euler et l'équation du transfert radiatif. Ce système est obtenu à partir du bilan d'énergie et d'impulsion totale. Puis on fait une discussion asymptotique pour ce modèle dans le régime hors équilibre et on obtient un système simple couplant les équations d'Euler et une équation elliptique. On montre l'existence des profifils de choc (réguliers) pour ce système, et la régularité de ces profils en fonction de l'amplitude du choc. Puis on étudie la stabilité asymptotique de ces profifils. Enfifin, on présente une étude d'un système décrivant le champ radiatif et les états internes de la matière. On montre l'existence de solutions pour ce système et on établit rigoureusement la convergence vers l'équilibre statistique. Les résultats théoriques sont illustrés par des simulations numériques.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00411849 |
Date | 19 June 2007 |
Creators | Lin, Chunjin |
Publisher | Université des Sciences et Technologie de Lille - Lille I |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds