Return to search

Etude multi-échelle des mécanismes de (dé)lithiation et de dégradation d'électrodes à base de LiFePO4 et de Silicium pour accumulateurs Li-ion

Ces travaux ont permis d'approfondir les mécanismes de (dé)lithiation et de vieillissement dans des électrodes à base de silicium et de LiFePO4 pour accumulateurs Li-ion à partir d'observations multi-échelles. Des cartographies de phases, autant à l'échelle de la particule qu'à l'échelle de l'électrode, ont été menées par microscopie électronique mettant en évidence de fortes hétérogénéités. Pour le silicium, la mise en place de cartographie unique par STEM/EELS, s'appuyant sur une base de données des pertes faibles d'alliages sensibles à l'air et au faisceau d'électrons, a permis de comprendre les mécanismes de lithiation à l'échelle du nanomètre. L'étude de la première lithiation a montré des différences de mécanismes de réaction avec le lithium suivant deux facteurs : la taille des particules et les défauts au sein de celles-ci. Il a été observé une composition d'alliage LixSi plus faible pour les nanoparticules que pour les microparticules. Les défauts dus notamment au broyage constituent des sites préférentiels de lithiation. En vieillissement, les nanoparticules subissent de profonds changements structuraux et morphologiques, passant d'un état sphérique cristallin (50 nm) à un réseau de fils amorphe (5-10 nm d'épaisseur) contenu dans une matrice de SEI. Pour le LiFePO4, il a été clairement montré, par la combinaison de plusieurs techniques de microscopies électroniques (diffraction des électrons en précession, EFSD : Electron Forward Scattering Diffraction, EFTEM), que les particules de taille nanométrique (100-200 nm) étaient soit entièrement lithiées soit entièrement délithiées à l'équilibre thermodynamique. De fortes hétérogénéités ont été observées dans les électrodes fines comme dans les électrodes épaisses. A l'échelle des particules, l'analyse statistique de plus de 64000 particules a montré que les plus petites particules se délithient en premier. A l'échelle de l'agglomérat, les cartographies de phases ont révélé un mécanisme " cœur-coquille " : la réaction débute de la surface vers le centre des agglomérats. A l'échelle de l'électrode, le front de propagation de phase se déplace suivant des chemins préférentiels de plus grandes porosités de la surface de l'électrode vers le collecteur de courant. La conductivité ionique au sein de nos électrodes est le facteur limitant.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00924945
Date29 November 2013
CreatorsRobert, Donatien
PublisherUniversité de Grenoble
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds