Dans ce travail de thèse, nous étudions, dans un contexte d'analyse convexe et d'optimisation, la prise en compte des contraintes dites d'autocorrélation, c'est-à-dire : nous considérons les situations où les vecteurs représentant les variables à optimiser sont contraintes à être les coefficients d'autocorrélation d'un signal discret à support fini. Cet ensemble des vecteurs à composantes autocorrélées se trouve être un cône convexe ; nous essayons d'en établir le plus de propriétés possibles : concernant sa frontière (lisse/polyédrale), ses faces, l'acuité, l'expression du cône polaire, l'évaluation du cône normal en un point, etc. Ensuite, nous étudions divers algorithmes pour résoudre des problèmes d'optimisation où le cône des vecteurs à composantes autocorrélées entre en jeu. Notre principal objet d'étude est le problème de la projection sur ce cône, dont nous proposons la résolution par trois algorithmes différents : algorithmes dits de suivi de chemin, celui des projections alternées, et via une relaxation non-convexe. Enfin, nous abordons la généralisation de la situation d'autocorrélation au cas de signaux bi-dimensionnels, avec toute la complexité que cela engendre : multiples définitions possibles, non-convexité des problèmes résultants, et complexité calculatoire accrue pour les algorithmes.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00195013 |
Date | 29 October 2007 |
Creators | Fuentes, Marc |
Publisher | Université Paul Sabatier - Toulouse III |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds