Return to search

Analyse et optimisation de problèmes sous contraintes d'autocorrélation

Dans ce travail de thèse, nous étudions, dans un contexte d'analyse convexe et d'optimisation, la prise en compte des contraintes dites d'autocorrélation, c'est-à-dire : nous considérons les situations où les vecteurs représentant les variables à optimiser sont contraintes à être les coefficients d'autocorrélation d'un signal discret à support fini. Cet ensemble des vecteurs à composantes autocorrélées se trouve être un cône convexe ; nous essayons d'en établir le plus de propriétés possibles : concernant sa frontière (lisse/polyédrale), ses faces, l'acuité, l'expression du cône polaire, l'évaluation du cône normal en un point, etc. Ensuite, nous étudions divers algorithmes pour résoudre des problèmes d'optimisation où le cône des vecteurs à composantes autocorrélées entre en jeu. Notre principal objet d'étude est le problème de la projection sur ce cône, dont nous proposons la résolution par trois algorithmes différents : algorithmes dits de suivi de chemin, celui des projections alternées, et via une relaxation non-convexe. Enfin, nous abordons la généralisation de la situation d'autocorrélation au cas de signaux bi-dimensionnels, avec toute la complexité que cela engendre : multiples définitions possibles, non-convexité des problèmes résultants, et complexité calculatoire accrue pour les algorithmes.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00195013
Date29 October 2007
CreatorsFuentes, Marc
PublisherUniversité Paul Sabatier - Toulouse III
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds