Return to search

Analyse de distributions spatio-temporelles de transitoires dans des signaux vectoriels. Application à la détection-classification d'activités paroxystiques intercritiques dans des observations EEG

Les signaux électroencéphalographiques enregistrés chez les patients épileptiques reflètent, en dehors des périodes correspondant aux crises d'épilepsie, des signaux transitoires appelés "activités épileptiformes" (AE). L'analyse des AE peut contribuer à l'étude des épilepsies partielles pharmaco-résistantes. Une méthode de caractérisation de la dynamique spatio-temporelle des AE dans des signaux EEG de profondeur est présentée dans ce document. La méthode est constituée de quatre étapes:<br /><br />1. Détection des AE monovoie. La méthode de détection, qui repose sur une approche heuristique, utilise un banc de filtres en ondelettes pour réhausser la composante pointue des AE (généralement appelée "spike" dans la littérature). La valeur moyenne des statistiques obtenues en sortie de chaque filtre est ensuite analysée avec un algorithme de Page-Hinkley dans le but de détecter des changements abrupts correspondant aux spikes.<br /><br />2. Fusion des AE. Cette procédure recherche des co-occurrences entre AE monovoie à l'aide d'une fenêtre glissante puis forme des AE multivoies.<br /><br />3. Extraction des sous-ensembles de voies fréquement et significativement activées lors des AE multivoies (appelés "ensembles d'activation").<br /><br />4. Evaluation de l'éxistence d'un ordre d'activation temporel reproductible (éventuellement partiel) au sein de chaque ensemble d'activation.<br /><br />Les méthodes proposées dans chacune des étapes ont tout d'abord été évaluées à l'aide de signaux simulés (étape 1) ou à l'aide de models Markoviens (étapes 2-4). Les résultats montrent que la méthode complète est robuste aux effets des fausses-alarmes. Cette méthode a ensuite été appliquée à des signaux enregistrés chez 8 patients (chacun contenant plusieurs centaines d'AE). Les résultats indiquent une grande reproductibilité des distributions spatio-temporelles des AE et ont permis l'identification de réseaux anatomo-fonctionnels spécifiques.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00007178
Date20 December 2003
CreatorsBourien, Jérôme
PublisherUniversité Rennes 1
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0025 seconds