Suite à l’exposition à des facteurs de risque incluant la malnutrition, la dyslipidémie, la sédentarité et les désordres métaboliques, les maladies cardiovasculaires (MCV) sont caractérisées par un état pro-oxydant et pro-inflammatoire, et une dérégulation de l’expression de divers facteurs responsables de l’homéostasie de l’environnement rédox et inflammatoire. L’implication d’enzymes antioxydantes telles que les superoxyde dismutases (SOD) et les glutathion peroxydases (Gpx), ainsi que la contribution de médiateurs pro-inflammatoires tels que l’angiopoietin-like 2 (Angptl2) ont été rapportées dans le cadre des MCV. Toutefois, les mécanismes moléculaires sensibles aux facteurs de risque et menant au développement des MCV sont peu connus. L’épigénétique est un mécanisme de régulation de l’expression génique sensible aux stimuli extracellulaires et pourrait donc contribuer au développement des MCV. La méthylation de l’ADN est un des mécanismes épigénétiques pouvant varier tant de manière gène-spécifique qu’à l’échelle génomique, et la conséquence de tels changements sur l’expression des gènes ciblés dépend du site de méthylation. Puisqu’il a été démontré que des variations au niveau de la méthylation de l’ADN peuvent être associées à divers contextes pathologiques incluant les MCV, le but de nos travaux était d’étudier le lien entre la méthylation de gènes antioxydants et pro-inflammatoires avec leurs répercussions fonctionnelles biologiques en présence de facteurs de risques associés aux MCV, tels que le vieillissement, la dyslipidémie et la sédentarité.
Dans la première étude, nous avons observé que dans l’artère fémorale de souris vieillissantes, la méthylation au niveau du promoteur du gène Sod2, codant pour l’enzyme antioxydante superoxyde dismutase de type 2 (SOD2 ou MnSOD), diminue avec l’âge. Ceci serait associé à l’induction de l’expression de MnSOD, renforçant ainsi la défense antioxydante endogène. Le vieillissement étant associé à une accumulation de la production de radicaux libres, nous avons étudié la vasodilatation dépendante de l’endothélium qui est sensible au stress oxydant. Nous avons observé que la capacité vasodilatatrice globale a été maintenue chez les souris âgées, aux dépens d’une diminution des facteurs hyperpolarisants dérivés de l’endothélium (EDHF) et d’une contribution accentuée de la voie du monoxyde d’azote (NO). Nous avons ensuite utilisé deux approches visant à réduire les niveaux de stress oxydant in vivo, soit la supplémentation avec un antioxydant, la catéchine, et l’exposition chronique à de l’exercice physique volontaire. Ces interventions ont permis de prévenir à la fois les changements au niveau de la fonction endothéliale et de l’hypométhylation de Sod2. Cette première étude démontre donc la sensibilité de la méthylation de l’ADN à l’environnement rédox.
Dans la deuxième étude, nous avons démontré une régulation de l’expression de l’enzyme antioxydante glutathion peroxydase 1 (Gpx1) en lien avec la méthylation de son gène codant, Gpx1, dans un contexte de dyslipidémie sévère. Nos résultats démontrent que dans le muscle squelettique de souris transgéniques sévèrement dyslipidémiques (LDLr-/-; hApoB+/+), Gpx1 est hyperméthylé, ce qui diminue l’expression de Gpx1 et affaiblit la défense antioxydante endogène. Chez ces souris, l’exercice physique chronique a permis d’augmenter l’expression de Gpx1 en lien avec une hypométhylation transitoire de son gène. Cette étude démontre que le stress oxydant associé à la dyslipidémie sévère altère les mécanismes de défense antioxydante, en partie via un mécanisme épigénétique. De plus, on observe également que l’exercice physique permet de renverser ces effets et peut induire des changements épigénétiques, mais de manière transitoire.
La troisième étude avait pour but d’étudier la régulation de l’Angptl2, une protéine circulante pro-inflammatoire, dans le contexte des MCV. Nous avons observé que chez des patients coronariens, la concentration circulante d’Angptl2 est significativement plus élevée que chez des sujets sains et ce, en lien avec une hypométhylation de son gène, ANGPTL2, mesurée dans les leucocytes circulants. Nous sommes les premiers à démontrer qu’en réponse à l’environnement pro-inflammatoire associé à une MCV, l’expression de l’Angptl2 est stimulée par un mécanisme épigénétique.
Nos études ont permis d’identifier des nouvelles régions régulatrices différentiellement méthylées situées dans les gènes impliqués dans la défense antioxydante, soit Sod2 en lien avec le vieillissement et Gpx1 en lien avec la dyslipidémie et l’exercice. Nous avons également démontré un mécanisme de régulation de l’Angptl2 dépendant de la méthylation d’ANGPTL2 et ce, pour la première fois dans un contexte de MCV. Ces observations illustrent la nature dynamique de la régulation épigénétique par la méthylation de l’ADN en réponse aux stimuli environnementaux. Nos études contribuent ainsi à la compréhension et l’identification de mécanismes moléculaires impliqués dans le développement du phénotype pathologique suite à l’exposition aux facteurs de risque, ce qui ouvre la voie à de nouvelles approches thérapeutiques. / Following exposure to risk factors including malnutrition, dyslipidemia, physical inactivity and metabolic disorders, cardiovascular diseases (CVD) are characterized by a pro-oxidative and pro-inflammatory state, and a dysregulation in the expression of various factors responsible for the redox and inflammatory environment homeostasis. The implication of antioxidant enzymes, such as superoxide dismutases (SOD) and glutathione peroxidases (Gpx), as well as the contribution of pro-inflammatory mediators such as angiopoietin-like 2 (Angptl2) are well characterized in the context of CVD. However, little is known about the molecular mechanisms sensitive to environmental cues leading to the development of CVD. Epigenetics are mechanisms regulating gene expression that are sensitive to extracellular stimuli and could therefore contribute to the pathogenesis of CVD. DNA methylation is an epigenetic mechanism that can vary both at gene and genomic levels; the consequence of these epigenetic changes on the expression of targeted genes is dependent on the methylation site. Since it has been reported that DNA methylation variations can be associated with diverse pathological conditions including CVD, the goal of our work was to study the link between the methylation of antioxidant and pro-inflammatory genes, and their consequences on biological functions in the context of risk factors associated with CVD, such as aging, dyslipidemia and physical inactivity.
In the first study, we observed that in the femoral artery of aging mice, the methylation at the promoter of the Sod2 gene, which codes for the antioxidant enzyme superoxide dismutase, type 2 (SOD2 or MnSOD), decreases with age. This suggests an induction of MnSOD expression and thus a strengthening of the endogenous antioxidant defense. Since aging is associated with an accumulation of free radicals, we studied the endothelium-dependant vasodilation, known to be sensitive to oxidative stress. We observed that, overall, vasodilatory capacity was preserved in aging mice, due to a concomitant decrease in endothelium-derived hyperpolarizing factors (EDHF) and an increased contribution of the nitric oxide (NO) pathway. We then used two in vivo oxidative stress-reducing approaches, namely the supplementation with the antioxidant catechin and chronic exposure to voluntary physical exercise. These interventions prevented the changes in endothelial function and the Sod2 hypomethylation-dependent induction of MnSOD expression. Hence, this first study demonstrates the sensitivity of DNA methylation to the redox environment.
In the second study, we demonstrated that the antioxidant enzyme glutathione peroxidase 1 (Gpx1) expression was regulated through the methylation of its coding gene, Gpx1, in the context of severe dyslipidemia. Our results show that in the skeletal muscle of severely dyslipidemic transgenic mice (LDLr-/-; hApoB+/+), Gpx1 is hypermethylated, which in turn decreased Gpx1 expression and weakened the endogenous antioxidant defense. In these mice, chronic physical exercise managed to increase Gpx1 expression, an effect linked with a transient gene hypomethylation. This study demonstrates that oxidative stress associated with severe dyslipidemia alters antioxidant defense mechanisms, partially through an epigenetic mechanism. Moreover, we also observed that physical exercise can revert these changes and can induce epigenetic changes, at least transiently.
The goal of the third project was to study Angptl2 regulation, a circulating pro-inflammatory protein, in the context of CVD. We observed that, in coronary patients, circulating Angptl2 concentration is significantly increased in conjunction with hypomethylation of its gene, ANGPTL2, measured in circulating leukocytes. We are the first to show that in response to the pro-inflammatory environment associated with a CVD, Angptl2 expression is stimulated by an epigenetic mechanism.
In conclusion, our studies allowed the identification of novel regulatory differentially methylated regions located in genes involved in antioxidant defense, namely Sod2, in the context of aging, and Gpx1 in the context of dyslipidemia and exercise. We also revealed, for the first time, an Angptl2 regulating mechanism dependent on ANGPTL2 methylation in a context of CVD. These observations illustrate the dynamic nature of epigenetic regulation through DNA methylation in response to environmental cues. Our studies therefore contribute to the understanding and identification of molecular mechanisms involved in the development of pathological phenotypes following exposure to risk factors, which opens the way to novel therapeutic strategies.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/15995 |
Date | 04 1900 |
Creators | Nguyen, Albert |
Contributors | Thorin, Éric |
Source Sets | Université de Montréal |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0042 seconds