• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mise en évidence des propriétés chimiotactiques de l’oxygène pour des cellules épithéliales : implication du récepteur EGFR dans l’aérotaxie / Identification of chemoattractant capacities of oxygen for epithelial cells : involvement of EGF receptor in aerotaxis

Deygas, Mathieu 21 November 2017 (has links)
La migration cellulaire dirigée est un processus crucial lors du développement embryonnaire, de la cicatrisation, de la réponse immunitaire mais aussi lors de la formation de métastases. La réussite de ces processus nécessite que les cellules perçoivent un signal asymétrique, l'interprète et s'oriente pour migrer de façon dirigée. In vivo, la migration est dirigée par de nombreux signaux du microenvironnement cellulaire. L'hypoxie, ou diminution du niveau d'oxygène tissulaire, est une caractéristique importante de l'environnement cellulaire dans l'embryon et dans les tumeurs solides. Du fait de la limitation de la diffusion de l'oxygène, l'hypoxie génère in vivo des gradients d'oxygène. Nous avons développé une méthode originale dans laquelle des cellules épithéliales génèrent elles-mêmes gradient d'oxygène in vitro. Et de façon très intéressante, ces cellules sont capables de migrer de façon directionnelle vers des concentrations en oxygène plus élevées. Cette capacité d'aérotaxie est indépendante de la respiration mitochondriale et des acteurs de réponse à l'hypoxie. Les dérivés réactifs de l'oxygène (ROS) seraient les médiateurs de la réponse migratoire au gradient. La production asymétrique de ROS entre l'avant et l'arrière des cellules serait à l'origine de l'activation différentielle du récepteur EGFR et de la persistance des cellules vers des concentrations plus importantes en oxygène. Cette capacité chimio-attractante de l'oxygène, connue chez les bactéries, mais non décrite pour des cellules eucaryotes, pourrait jouer un rôle majeur lors du développement embryonnaire et dans la dissémination métastatique / Cell migration is a crucial process during embryonic development, wound healing, immune system but also metastasis. Success of these processes relies on the capacities of cells to sense an asymmetric signal, interpret it and orient themselves to migrate in a directed manner. In vivo, migration is guided by several signals from the cellular microenvironment. Hypoxia, or decrease in the level of tissue oxygen, is an important feature of the cellular environment in the embryo and in solid tumors. Owing to the limitation of oxygen diffusion, hypoxia often generates oxygen gradients in vivo. We have developed an original method in which epithelial cells themselves generate oxygen gradient in vitro. And interestingly, these cells are able to migrate directionally to higher oxygen concentrations. This aerotaxis ability is independent of mitochondrial respiration and hypoxia response pathway. The reactive oxygen species (ROS) would mediate the migratory response to the gradient. The asymmetric production of ROS between the front and the back of the cells would be at the origin of the differential activation of the EGFR receptor and the persistence of cells towards higher oxygen concentrations. This chemoattractant capacity of oxygen, known in bacteria, but not described for eukaryotic cells, could play a major role in embryonic development and in metastatic dissemination
2

Implication des ROS dans la régulation des dynamiques calciques locales de l’endothélium

Berlatie, Marianne 06 1900 (has links)
No description available.
3

Régulation épigénétique de la défense antioxydante et de l'Angiopoietin-like 2 dans le contexte du vieillissement et des maladies cardiovasculaires

Nguyen, Albert 04 1900 (has links)
Suite à l’exposition à des facteurs de risque incluant la malnutrition, la dyslipidémie, la sédentarité et les désordres métaboliques, les maladies cardiovasculaires (MCV) sont caractérisées par un état pro-oxydant et pro-inflammatoire, et une dérégulation de l’expression de divers facteurs responsables de l’homéostasie de l’environnement rédox et inflammatoire. L’implication d’enzymes antioxydantes telles que les superoxyde dismutases (SOD) et les glutathion peroxydases (Gpx), ainsi que la contribution de médiateurs pro-inflammatoires tels que l’angiopoietin-like 2 (Angptl2) ont été rapportées dans le cadre des MCV. Toutefois, les mécanismes moléculaires sensibles aux facteurs de risque et menant au développement des MCV sont peu connus. L’épigénétique est un mécanisme de régulation de l’expression génique sensible aux stimuli extracellulaires et pourrait donc contribuer au développement des MCV. La méthylation de l’ADN est un des mécanismes épigénétiques pouvant varier tant de manière gène-spécifique qu’à l’échelle génomique, et la conséquence de tels changements sur l’expression des gènes ciblés dépend du site de méthylation. Puisqu’il a été démontré que des variations au niveau de la méthylation de l’ADN peuvent être associées à divers contextes pathologiques incluant les MCV, le but de nos travaux était d’étudier le lien entre la méthylation de gènes antioxydants et pro-inflammatoires avec leurs répercussions fonctionnelles biologiques en présence de facteurs de risques associés aux MCV, tels que le vieillissement, la dyslipidémie et la sédentarité. Dans la première étude, nous avons observé que dans l’artère fémorale de souris vieillissantes, la méthylation au niveau du promoteur du gène Sod2, codant pour l’enzyme antioxydante superoxyde dismutase de type 2 (SOD2 ou MnSOD), diminue avec l’âge. Ceci serait associé à l’induction de l’expression de MnSOD, renforçant ainsi la défense antioxydante endogène. Le vieillissement étant associé à une accumulation de la production de radicaux libres, nous avons étudié la vasodilatation dépendante de l’endothélium qui est sensible au stress oxydant. Nous avons observé que la capacité vasodilatatrice globale a été maintenue chez les souris âgées, aux dépens d’une diminution des facteurs hyperpolarisants dérivés de l’endothélium (EDHF) et d’une contribution accentuée de la voie du monoxyde d’azote (NO). Nous avons ensuite utilisé deux approches visant à réduire les niveaux de stress oxydant in vivo, soit la supplémentation avec un antioxydant, la catéchine, et l’exposition chronique à de l’exercice physique volontaire. Ces interventions ont permis de prévenir à la fois les changements au niveau de la fonction endothéliale et de l’hypométhylation de Sod2. Cette première étude démontre donc la sensibilité de la méthylation de l’ADN à l’environnement rédox. Dans la deuxième étude, nous avons démontré une régulation de l’expression de l’enzyme antioxydante glutathion peroxydase 1 (Gpx1) en lien avec la méthylation de son gène codant, Gpx1, dans un contexte de dyslipidémie sévère. Nos résultats démontrent que dans le muscle squelettique de souris transgéniques sévèrement dyslipidémiques (LDLr-/-; hApoB+/+), Gpx1 est hyperméthylé, ce qui diminue l’expression de Gpx1 et affaiblit la défense antioxydante endogène. Chez ces souris, l’exercice physique chronique a permis d’augmenter l’expression de Gpx1 en lien avec une hypométhylation transitoire de son gène. Cette étude démontre que le stress oxydant associé à la dyslipidémie sévère altère les mécanismes de défense antioxydante, en partie via un mécanisme épigénétique. De plus, on observe également que l’exercice physique permet de renverser ces effets et peut induire des changements épigénétiques, mais de manière transitoire. La troisième étude avait pour but d’étudier la régulation de l’Angptl2, une protéine circulante pro-inflammatoire, dans le contexte des MCV. Nous avons observé que chez des patients coronariens, la concentration circulante d’Angptl2 est significativement plus élevée que chez des sujets sains et ce, en lien avec une hypométhylation de son gène, ANGPTL2, mesurée dans les leucocytes circulants. Nous sommes les premiers à démontrer qu’en réponse à l’environnement pro-inflammatoire associé à une MCV, l’expression de l’Angptl2 est stimulée par un mécanisme épigénétique. Nos études ont permis d’identifier des nouvelles régions régulatrices différentiellement méthylées situées dans les gènes impliqués dans la défense antioxydante, soit Sod2 en lien avec le vieillissement et Gpx1 en lien avec la dyslipidémie et l’exercice. Nous avons également démontré un mécanisme de régulation de l’Angptl2 dépendant de la méthylation d’ANGPTL2 et ce, pour la première fois dans un contexte de MCV. Ces observations illustrent la nature dynamique de la régulation épigénétique par la méthylation de l’ADN en réponse aux stimuli environnementaux. Nos études contribuent ainsi à la compréhension et l’identification de mécanismes moléculaires impliqués dans le développement du phénotype pathologique suite à l’exposition aux facteurs de risque, ce qui ouvre la voie à de nouvelles approches thérapeutiques. / Following exposure to risk factors including malnutrition, dyslipidemia, physical inactivity and metabolic disorders, cardiovascular diseases (CVD) are characterized by a pro-oxidative and pro-inflammatory state, and a dysregulation in the expression of various factors responsible for the redox and inflammatory environment homeostasis. The implication of antioxidant enzymes, such as superoxide dismutases (SOD) and glutathione peroxidases (Gpx), as well as the contribution of pro-inflammatory mediators such as angiopoietin-like 2 (Angptl2) are well characterized in the context of CVD. However, little is known about the molecular mechanisms sensitive to environmental cues leading to the development of CVD. Epigenetics are mechanisms regulating gene expression that are sensitive to extracellular stimuli and could therefore contribute to the pathogenesis of CVD. DNA methylation is an epigenetic mechanism that can vary both at gene and genomic levels; the consequence of these epigenetic changes on the expression of targeted genes is dependent on the methylation site. Since it has been reported that DNA methylation variations can be associated with diverse pathological conditions including CVD, the goal of our work was to study the link between the methylation of antioxidant and pro-inflammatory genes, and their consequences on biological functions in the context of risk factors associated with CVD, such as aging, dyslipidemia and physical inactivity. In the first study, we observed that in the femoral artery of aging mice, the methylation at the promoter of the Sod2 gene, which codes for the antioxidant enzyme superoxide dismutase, type 2 (SOD2 or MnSOD), decreases with age. This suggests an induction of MnSOD expression and thus a strengthening of the endogenous antioxidant defense. Since aging is associated with an accumulation of free radicals, we studied the endothelium-dependant vasodilation, known to be sensitive to oxidative stress. We observed that, overall, vasodilatory capacity was preserved in aging mice, due to a concomitant decrease in endothelium-derived hyperpolarizing factors (EDHF) and an increased contribution of the nitric oxide (NO) pathway. We then used two in vivo oxidative stress-reducing approaches, namely the supplementation with the antioxidant catechin and chronic exposure to voluntary physical exercise. These interventions prevented the changes in endothelial function and the Sod2 hypomethylation-dependent induction of MnSOD expression. Hence, this first study demonstrates the sensitivity of DNA methylation to the redox environment. In the second study, we demonstrated that the antioxidant enzyme glutathione peroxidase 1 (Gpx1) expression was regulated through the methylation of its coding gene, Gpx1, in the context of severe dyslipidemia. Our results show that in the skeletal muscle of severely dyslipidemic transgenic mice (LDLr-/-; hApoB+/+), Gpx1 is hypermethylated, which in turn decreased Gpx1 expression and weakened the endogenous antioxidant defense. In these mice, chronic physical exercise managed to increase Gpx1 expression, an effect linked with a transient gene hypomethylation. This study demonstrates that oxidative stress associated with severe dyslipidemia alters antioxidant defense mechanisms, partially through an epigenetic mechanism. Moreover, we also observed that physical exercise can revert these changes and can induce epigenetic changes, at least transiently. The goal of the third project was to study Angptl2 regulation, a circulating pro-inflammatory protein, in the context of CVD. We observed that, in coronary patients, circulating Angptl2 concentration is significantly increased in conjunction with hypomethylation of its gene, ANGPTL2, measured in circulating leukocytes. We are the first to show that in response to the pro-inflammatory environment associated with a CVD, Angptl2 expression is stimulated by an epigenetic mechanism. In conclusion, our studies allowed the identification of novel regulatory differentially methylated regions located in genes involved in antioxidant defense, namely Sod2, in the context of aging, and Gpx1 in the context of dyslipidemia and exercise. We also revealed, for the first time, an Angptl2 regulating mechanism dependent on ANGPTL2 methylation in a context of CVD. These observations illustrate the dynamic nature of epigenetic regulation through DNA methylation in response to environmental cues. Our studies therefore contribute to the understanding and identification of molecular mechanisms involved in the development of pathological phenotypes following exposure to risk factors, which opens the way to novel therapeutic strategies.
4

Angiotensin II Type 2 Receptor (AT2R) in Glomerulogenesis

Liao, Min-Chun 09 1900 (has links)
Les données épidémiologiques indiquent que le diabète maternel est associé de manière significative aux anomalies congénitales des reins et des voies urinaires (CAKUT), ce qui implique un risque accru de CAKUT chez la progéniture des mères diabétiques par rapport à la population globale. Les causes de CAKUT sont multifactorielles, impliquant des facteurs génétiques et environnementaux. Le récepteur de l’angiotensine II de type 2 (AT2R) est l’un des gènes candidats impliqués dans le CAKUT humain et murin. Bien que de nombreuses études soutiennent l’influence des facteurs génétiques et environnementaux sur le développement rénal et la pathogenèse de CAKUT, les effets du gène AT2R et du milieu hyperglycémique in utero sur le développement rénal et les effets à long terme chez les enfants de mères diabétiques ne sont pas clairs. Cette thèse a pour objectif d'étudier l'influence de chaque facteur individuellement, ainsi que l'interaction entre ces deux facteurs. Premièrement, nous avons examiné si le déficit en AT2R (AT2RKO) altère la glomérulogenèse via la formation, la maturation et l'intégrité des podocytes. Nous avons observé que la glomérulogenèse était diminuée chez les embryons E15 AT2RKO, mais le nombre de néphrons ne présentaient aucune différence entre les nouveaux-nés AT2RKO et les souris de type sauvage. Les souris AT2RKO présentaient une dysplasie rénale avec un volume de touffes glomérulaires et un nombre de podocytes inférieurs à l’âge de trois semaines. Nos études ont démontré que la perte d’AT2R via l’augmentation de la génération des dérivés réactifs de l’oxygène (ROS) induite par la NADPH oxydase 4 (Nox4) stimulait l’interaction avec la protéine Hhip (‘Hedgehog interacting protein’), ce qui déclenchait en outre soit l’apoptose des podocytes par l’activation des voies de la caspase- 3 et de la p53, soit la transition épithéliale-mésenchymateuse des podocytes (EMT) par l’activation de la signalisation TGFβ1–Smad2/3. L'ARNm de Hhip glomérulaire était régulé positivement dans les biopsies rénales chez les patients atteints de glomérulosclérose segmentaire focale (FSGS). Les résultats suggèrent que le déficit en AT2R est associé à une perte ou un dysfonctionnement des podocytes et est dû, au moins en partie, à une expression accrue de Hhip ectopique dans les podocytes. Deuxièmement, nous avons cherché à établir les mécanismes sous-jacents par lesquels un milieu hyperglycémique in utero et un régime riche en graisses (HFD) après le sevrage accélèrent la programmation périnatale des lésions rénales. Nous avons observé que la progéniture des mères atteintes de diabète sévère avait un phénotype de restriction de croissance intra-utérine (IUGR) et avait développé une hypertension légère et des signes d'atteinte rénale à l'âge adulte. De plus, la progéniture nourrie avec une HFD post-sevrage présentait un rattrapage rapide de la croissance puis des lésions rénales associées à une augmentation de l’expression rénale de TGFβ1 et du collagène de type IV, à la production de ROS et à une accumulation de lipides rénaux, mais sans hypertension systémique. Des études in vitro ont démontré que le HFD ou les acides gras libres accéléraient le processus de programmation périnatale des lésions rénales, via une expression accrue de CD36 et de la protéine de liaison aux acides gras (Fabp4) qui cible les ROS, le facteur nucléaire-kappa B et le TGFβ1. Ces résultats indiquent que l'exposition précoce à l'HFD chez les enfants de mères diabétiques ayant subi une IUGR augmente le risque d'apparition de lésions rénales à l’âge adulte, mais pas d'hypertension. En résumé, AT2R joue un rôle essentiel dans la glomérulogenèse et influence l'intégrité et la fonction du podocyte via des altérations de l'expression de Hhip. En outre, les enfants de mères diabétiques ont un risque accru d'hypertension et de lésions rénales; la surnutrition postnatale accélère les lésions rénales chez ces enfants. Bien que le gène AT2R et le milieu hyperglycémique in utero aient tous les deux un impact sur le développement du rein et sur les maladies rénales ultérieures, l'interaction entre ces deux facteurs doit encore faire l'objet d'études supplémentaires. / Epidemiologic data indicate that maternal diabetes significantly associates with congenital anomalies of the kidney and urinary tract (CAKUT), which implies an increased chance of CAKUT in the offspring of mothers with diabetes compared to the general population. The causes of CAKUT are multifactorial, involving genetic and environmental factors. The angiotensin II receptor type 2 (AT2R) is one of the candidate genes to be implicated in both human and murine CAKUT. Although numerous studies support the influence of genetic and environmental factors on kidney development and the pathogenesis of CAKUT, the impacts of the AT2R gene and hyperglycemic milieu in utero on kidney development and long-term outcomes in the offspring of diabetic mothers remain unclear. This thesis aims to investigate the influence of each factor individually, as well as their interaction. Firstly, we investigated whether AT2R deficiency (AT2R knock-out (KO)) impairs glomerulogenesis via podocytes formation, maturation and integrity. We observed that glomerulogenesis is decreased in AT2RKO embryos at embryonic day 15 (E15), but actual nephron numbers are no different between AT2RKO and wild-type newborn mice. AT2RKO mice exhibited renal dysplasia with lower glomerular tuft volume and reduced podocyte numbers at the age of three weeks. Our studies demonstrated that loss of AT2R via NADPH oxidase 4 (Nox4)-derived reactive oxygen species (ROS) generation stimulates ectopic hedgehog interacting protein (Hhip) expression, which further triggers either podocyte apoptosis by the activation of the caspase-3 and p53 pathways or podocyte epithelial–to– mesenchymal transition (EMT) by the activation of TGFβ1–Smad2/3 signaling. Glomerular Hhip mRNA is upregulated in kidney biopsies of patients with focal segmental glomerulosclerosis (FSGS). The results suggest that AT2R deficiency is associated with podocyte loss/dysfunction and is mediated, at least in part, via increased ectopic Hhip expression in podocytes. Secondly, we aimed to establish the underlying mechanisms by which a hyperglycemic milieu in utero and a post-weaning high-fat diet (HFD) accelerate the perinatal programming of kidney injury. We observed that the offspring of dams with severe maternal diabetes have an intrauterine growth restriction (IUGR) phenotype and develop mild hypertension and evidence of kidney injury in adulthood. Moreover, those offspring fed with a post-weaning HFD result in rapid catch-up growth and subsequent profound kidney injury associated with the augmentation of renal TGFβ1 and collagen type IV expression, increased production of ROS, and accumulation of renal lipids, but not systemic hypertension. In vitro studies demonstrated that HFD or free fatty acids accelerate the process of perinatal programming of kidney injury, via increased CD36 and fatty acid-binding protein 4 (Fabp4) expression, which targets ROS, nuclear factor-kappa B and TGFβ1 signaling. These results indicate that early postnatal exposure to HFD in IUGR offspring of diabetic dams increases the risk of later developing kidney injury, but not hypertension. In summary, AT2R plays an essential role in glomerulogenesis and influences the podocyte integrity and function via alterations of Hhip expression. In addition, the offspring of diabetic mothers have an increased risk of hypertension and kidney injury; postnatal overnutrition further accelerates kidney injury in those offspring. Although both AT2R and hyperglycemic milieu in utero have an impact on kidney development and later kidney diseases, the interaction between these two factors still needs further studies.

Page generated in 0.0963 seconds