Return to search

Caractérisation numérique d’antennes VLF-LF en environnement réel / Numerical characterization of VLF-LF antennas in real environment

Les très basses fréquences (VLF) sont aujourd’hui principalement utilisées pour les communications sous-marines. Ces fréquences ont en effet l’avantage de pénétrer dans l’eau de mer jusqu’à quelques dizaines de mètre de profondeur, ainsi que de permettre des communications à très longue distance, au-delà de l’horizon. Les antennes nécessaires à l’établissement de ces communications sont nécessairement de très petite taille par rapport aux longueurs d’onde mises en jeu. Ces antennes sont des structures composées de centaines de mètre de câbles métalliques, situées à un emplacement étudié pour les qualités diélectriques du sol ou les avantages structurels du relief. Pour étudier de telles antennes, nous proposons l’utilisation d’un code basé sur une méthode temporelle, la TLM. Cette méthode peut se révéler être très efficace pour des études sur de larges bandes de fréquence et en présence d’un environnement diélectrique complexe. Pour cela, nous avons amélioré le modèle du Fil Mince permettant de modéliser une structure métallique en une dimension et avons cherché à valider son fonctionnement en présence d’un environnement réaliste. Dans ce document, nous présentons ainsi les différentes étapes ayant abouties aux améliorations apportées au modèle de Fil Mince. Notre code a été validé en comparant nos résultats à ceux de FEKO, un logiciel commercial basé sur la MoM considéré comme la méthode la plus adaptée à ce type de problème. Nous avons proposé, en particulier, une solution permettant de garantir une bonne précision du modèle quel que soit l’orientation du fil dans le maillage cartésien 3D. Nous avons ensuite précisé le domaine de validité des fils coudés ainsi que des jonctions de plusieurs fils. Nous avons étudié également l’interaction entre le fil et des milieux inhomogènes. Il s’agit là d’une problématique ambitieuse pour laquelle nous avons apporté quelques éléments de réponse mais qui reste à ce jour un verrou technologique à lever. Enfin, nous avons étudié des structures antennaires réalistes. Les simulations d’un système composé d’antennes en T déployé dans une vallée ont permis d’appréhender le fonctionnement d’une telle structure et ont montré l’intérêt de notre méthode. En effet, les temps de calcul nécessaires à la résolution du problème sont significativement plus faibles avec le code TLM qu’avec le logiciel FEKO sur ce type de sol complexe. Les simulations d’une antenne Trideco avec un plan de masse radial aérien ou enterré ont quant à elles montré les limites actuelles du code TLM qui reste handicapé par une modélisation imprécise des nœuds de connexion entre plusieurs fils et de leur interaction avec les milieux inhomogènes. / Submarine communications are the main usage of the very low frequency (VLF). This frequency band allows to radiate up to a few tens meter of depth and to a very long distance. Antennas for such telecommunications are necessarily small in regard to the wavelength. However, these structures are composed of hundred meters of thin metallic cables and their locations are often chosen for their dielectric characteristics or the structural advantage provided by the relief. To evaluate such antennas, we propose to use a home-made software, based on the TLM method. Such technique can be efficient for studying wide band electromagnetic problems in complex dielectric environment. Then we have improved the TLM Thin Wire model and we have evaluated its performances in realistic environment. In this document, we present our work and its validation by comparing our results to those obtained with the commercial software FEKO, based on the MoM, considered as the most suitable technique for this kind of problem. A solution assuring a good accuracy of the model for an arbitrary orientation of the Thine Wire in the 3D cartesian grid was proposed. We have also specified the limitations of the bent wire and the wires junction. In addition, we have studied the interaction between the wire and inhomogeneous media. This is an ambitious problem for which we brought some elements of answer but which remains a challenge. Finally, we have tested our software on some realistic antenna systems. The simulations of a valley span T antennas system allow to understand the functioning of such radiating structure and to show the interest of our method. The computation times are significantly lower with the TLM method than with FEKO to deal with antennas above such complex ground. However, the simulations of a Trideco antenna with aerial or buried radial ground plane showed the actual limitations of the TLM software which remains handicapped by an insufficient accuracy of the wires junction model and the inhomogeneous media interactions.

Identiferoai:union.ndltd.org:theses.fr/2018AZUR4081
Date24 October 2018
CreatorsSaintier, David
ContributorsCôte d'Azur, Dubard, Jean-Lou
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0017 seconds