Return to search

Un niveau minimal d'un homologue potentiel de la phosphoinositide-phosphatase SAC1 chez "Plasmodium falciparum" semble requis pour assurer la survie durant le stade érythrocytaire asexué

La malaria, endémique dans 91 pays tropicaux et sub-tropicaux, est l’une des maladies infectieuses les plus mortelles chez l’humain. Le fardeau de cette maladie porte principalement sur l’Afrique, qui compte plus de 90% des cas d’infections ainsi que des morts enregistrés, la majorité étant des enfants en bas âge. Des cinq espèces de parasites du genre Plasmodium qui peuvent causer la maladie chez l’humain, Plasmodium falciparum est de loin la plus mortelle et la plus étudiée. La résistance aux médicaments actuels et l’absence d’un vaccin préventif procurant une immunité de longue durée démontrent l’urgent besoin de trouver de nouvelles cibles thérapeutiques. Chez les cellules eucaryotes, l’identité des organites cellulaires est définie par les phosphoinositides, des composants mineurs des membranes cellulaires, et maintenue grâce aux kinases et aux phosphatases impliquées dans leur métabolisme. Les rôles de certaines phospholipides-kinases dans plusieurs étapes critiques du cycle de vie de Plasmodium ont récemment été découverts, toutefois, rien n’est connu quant aux fonctions des phosphoinositides phosphatases de cet organisme. Les travaux décrits ci-dessous présentent une première caractérisation d’une protéine homologue à la famille des phosphoinositides phosphatases SAC1. Les résultats montrent que cette protéine est exprimée durant tout le cycle érythrocytaire asexué et qu’elle se localise au réticulum endoplasmique ainsi que potentiellement à l’appareil de Golgi. L’étude de lignées conditionnelles et knockout suggèrent qu’un niveau minimal de la protéine est nécessaire pour la survie du parasite durant le cycle érythrocytaire. En somme, la combinaison des résultats obtenus laisse penser que cette protéine pourrait avoir une fonction dans le système de sécrétion du parasite P. falciparum et qu’elle pourrait donc constituer une cible thérapeutique intéressante pour le développement de nouveaux antimalariaux. / Malaria is endemic in 91 tropical and sub-tropical countries and is one of the deadliest infectious human diseases. Africa has the highest burden with more than 90% of cases and malaria deaths registered yearly, mostly in children under 5 years-old. Despite the fact that infection in human can be caused by five Plamsodium species, infection by Plasmodium falciparum is the most severe and therefore the most studied. Resistance to antimalarials and the absence of a preventive vaccine show the urgent need of new therapeutic targets. In eukaryotic cells, organelles identity is defined by phosphoinositides, minor membranes components, and maintained by the kinases and phosphatases involved in their metabolism. The fact that certain kinases have roles in critical steps of Plasmodium life cycle has recently been acknowledged. However, the roles of the phosphatases are still unknown. My work presents a first characterization of a putative phosphoinositide phosphatase of the SAC1 family. Results provided show that the protein is expressed throughout the asexual blood stages and that it localizes to endoplasmic reticulum and potentially to the Golgi apparatus. Studies on knockdown and knockout strains suggest that a minimal amount of the protein is required during the asexual blood stages. In summary, the combination of the results presented suggests that the protein has an important function in the parasite P. falciparum secretion system and therefore, may represent an interesting potential target for drug development.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/28230
Date24 April 2018
CreatorsThériault, Catherine.
ContributorsRichard, Dave
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (xi, 69 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0659 seconds