We present a rigorous yet accessible introduction to structures on finite sets foundational for a formal study of complex networks. This includes a thorough treatment of binary relations, distance spaces, their properties and similarities. Correspondences between relations and graphs are given and a brief introduction to graph theory is followed by a more detailed study of cohesiveness and centrality. We show how graph degeneracy is equivalent to the concept of k-cores, which give a measure of the cohesiveness or interconnectedness of a subgraph. We then further extend this to d-cores of directed graphs. After a brief introduction to topology, focusing on topological spaces from distances, we present a historical discussion on the early developments of algebraic topology. This is followed by a more formal introduction to simplicial homology where we define the homology groups. In the context of algebraic topology, the d-cores of a digraph give rise to a partially ordered set of subgraphs, leading to a set of filtrations that is two-dimensional in nature. Directed clique complexes of digraphs are defined in order to encode the directionality of complete subdigraphs. Finally, we apply these methods to the neuronal network of C.elegans. Persistent homology with respect to directed core filtrations as well as robustness of homology to targeted edge percolations in different directed cores is analyzed. Much importance is placed on intuition and on unifying methods of such dispersed disciplines as sociology and network neuroscience, by rooting them in pure mathematics. / Vi presenterar en rigorös men lättillgänglig introduktion till de abstrakta strukturer på ändliga mängder som är grundläggande för en formell studie av komplexa nätverk. Detta inkluderar en grundlig redogörelse av binära relationer och distansrum, deras egenskaper samt likheter. Korrespondenser mellan olika typer av relationer och grafer förklaras och en kort introduktion till grafteori följs av en mer detaljerad studie av sammanhållning och centralitet. Vi visar hur begreppet 'degeneracy' är ekvivalent med begreppet k-kärnor (eng: k-cores), vilket ger ett mått på sammanhållningen hos en delgraf. Vi utökar sedan detta till konceptet d-kärnor (eng: d-cores) för riktade grafer. Efter en kort introduktion till topologi med fokus på topologiska rum från distansrum, så presenterar vi en historisk diskussion kring den tidiga utvecklingen av algebraisk topologi. Detta följs av en mer formell introduktion till homologi, där vi bl.a. definierar homologigrupperna. Vi definierar sedan så kallade riktade klick-komplex som simplistiska komplex (eng: simplicial complexes) från riktade grafer, där d-kärnorna av en riktad graf då ger upphov till filtrerade komplex i två parametrar. Persistent homologi med avseende på dessa riktade kärnfiltreringar såväl som robusthet mot kantpercolationer i olika kärnor analyseras sedan för det neurala nätverket hos C.Elegans. Stor vikt läggs vid intuition och förståelse, samt vid att förena metodiker för så spridda discipliner som sociologi och neurovetenskap.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-311582 |
Date | January 2021 |
Creators | Lord, Johan |
Publisher | KTH, Matematik (Avd.) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2021:378 |
Page generated in 0.0022 seconds