Interactions between three immiscible phases, including incompressible viscoelastic structures and fluids, form standard constellations for countless scenarios in natural science. The complexity of many such scenarios has motivated various research efforts in scientific computing. This work presents novel numerical approaches for two specific of these ternary fluid-structure interaction constellations. The potential of these approaches is demonstrated by diverse applications. First, a phase field model is developed describing the interaction between a fluid and a viscoelastic solid. For this purpose, a Navier-Stokes-Cahn-Hilliard system is considered together with a hyperelastic neo-Hookean model. Based on this, an arbitrary Lagrangian-Eulerian (ALE) method is implemented to simulate the indentation of the solid material in the context of atomic force microscopy, capable of predicting physical parameters. Next, the second approach is developed to describe the interaction between a two-phase fluid and a viscoelastic solid, where fluid and solid are defined on separate domains but aligned at the interface between them. The previously introduced phase field model is used to represent the fluid and an ALE method is used for the motion of the grid, where the fluid-solid interface moves with flow velocity. A unified system is solved in all subdomains, which includes both the balance of mass and momentum and the balance of forces at the fluid-solid interface. Simulations of static and dynamic soft wetting are subsequently presented, in particular a contact line moving over a substrate with oscillating stick-slip behavior. This work combines the advantages of phase field and ALE methods for meaningful simulations and emphasizes validity and numerical stability in all approaches.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:89516 |
Date | 09 February 2024 |
Creators | Mokbel, Dominic |
Contributors | Aland, Sebastian, Peschka, Dirk, Technische Universität Bergakademie Freiberg |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds