Les protocoles de cryptographie asymétrique nécessitent des calculs arithmétiques dans différentes structures mathématiques de grandes tailles. Pour garantir une sécurité suffisante, ces tailles varient de plusieurs centaines à plusieurs milliers de bits et rendent les opérations arithmétiques coûteuses en temps de calcul. D'autre part, les architectures grand public actuelles embarquent plusieurs unités de calcul, réparties sur les processeurs et éventuellement sur les cartes graphiques. Ces ressources sont aujourd'hui facilement exploitables grâce à des interfaces de programmation parallèle comme OpenMP ou CUDA. Dans cette thèse, nous étudions la parallélisation d'opérateurs à différents niveaux arithmétique. Nous nous intéressons plus particulièrement à la multiplication entre entiers multiprécision ; à la multiplication modulaire ; et enfin à la multiplication scalaire sur les courbes elliptiques.Dans chacun des cas, nous étudions différents ordonnancements des calculs permettant d'obtenir les meilleures performances. Nous proposons également une bibliothèque permettant la parallélisation sur processeur graphique d'instances d'opérations modulaires et d'opérations sur les courbes elliptiques. Enfin, nous proposons une méthode d'optimisation automatique de la multiplication scalaire sur les courbes elliptiques pour de petits scalaires permettant l'élimination des sous-expressions communes apparaissant dans la formule et l'application systématique de transformations arithmétiques. / Asymmetric cryptography requires some computations in large size finite mathematical structures. To insure the required security, these sizes range from several hundred to several thousand of bits. Mathematical operations are thus expansive in terms of computation time. Otherwise, current architectures have several computing units, which are distribued over the processors and GPU and easily implementable using dedicated languages as OpenMP or CUDA. In this dissertation, we investigate the parallelization of some operators for different arithmetical levels.In particular, our research focuse on parallel multiprecision and modular multiplications, and the parallelization of scalar multiplication over elliptic curves. We also propose a library to parallelize modular operations and elliptic curves operations. Finally, we present a method which allow to optimize scalar elliptic curve multiplication for small scalars.
Identifer | oai:union.ndltd.org:theses.fr/2011MON20184 |
Date | 19 December 2011 |
Creators | Izard, Thomas |
Contributors | Montpellier 2, Imbert, Laurent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds