Machine learning and AI are growing rapidly and they are being implemented more often than before due to their high accuracy and performance. One of the biggest challenges to machine learning is data collection. The training data is the most important part of any machine learning project since it determines how the trained model will behave. In the case of object classification and detection, capturing a large number of images per object is not always possible and can be a very time-consuming and tedious process. This thesis explores options specific to image classification that help reducing the need to capture many images per object while still keeping the same performance accuracy. In this thesis, experiments have been performed with the goal of achieving a high classification accuracy with a limited dataset. One method that is explored is to create artificial training images using a game engine. Ways to expand a small dataset such as different data augmentation methods, and regularization methods, are also employed. / Maskininlärning och AI växer snabbt och de implementeras allt oftare på grund av deras höga noggrannhet och prestanda. En av de största utmaningarna för maskininlärning är datainsamling. Träningsdata är den viktigaste delen av ett maskininlärningsprojekt eftersom den avgör hur den tränade modellen kommer att bete sig. När det gäller objektklassificering och detektering är det inte alltid möjligt att ta många bilder per objekt och det kan vara en process som kräver mycket tid och arbete. Det här examensarbetet utforskar alternativ som är specifika för bildklassificering som minskar behovet av att ta många bilder per objekt samtidigt som prestanda bibehålls. I det här examensarbetet, flera experiment har utförts med målet att uppnå en hög klassificeringsprestanda med en begränsad dataset. En metod som utforskas är att skapa träningsbilder med hjälp av en spelmotor. Metoder för att utöka antal bilder i ett litet dataset, som data augmenteringsmetoder och regleringsmetoder, används också.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hh-47325 |
Date | January 2022 |
Creators | Yonan, Yonan, Baaz, August |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.1281 seconds