Return to search

Asymptotic properties of solutions to wave equations with time-dependent dissipation

Gegenstand der Dissertation ist die Untersuchung der asymptotischen Eigenschaften von Lösungen des Cauchy-Problems für eine Wellengleichung mit zeitabhängiger Dämpfung $b=b(t)$ und das Wechselspiel zwischen dem Verhalten des Koeffizienten $b(t)ge0$ und sich ergebenden Abschätzungen der Energie auf der Basis von $L^q$, $qge2$. Dabei stellt sich heraus, dass zwischen zwei Szenarien, dem der nicht-effektiven und dem der effektiven Dämpfung zu unterscheiden ist. In beiden Fällen werden die Hauptterme der Lösungsdarstellung konstruiert und davon ausgehend erstmalig $L^p$--$L^q$ Abschätzung für die Lösung und ihre Ableitungen angegeben. Ebenso wird die Schärfe der Abschätzungen diskutiert und in Form einer modifizierten Scattering-Theorie beziehungsweise des Diffusionsphänomens konkretisiert.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:105-9950076
Date14 December 2009
CreatorsWirth, Jens
ContributorsTU Bergakademie Freiberg, Mathematik und Informatik, Prof. Dr. Michael Reissig, Prof. Dr. Michael Reissig, Prof. Dr. Rainer Picard, Prof. Dr. Vladimir Georgiev, Prof. Dr. Kiyoshi Mochizuki
PublisherTechnische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola"
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0018 seconds