La phase aqueuse de l’atmosphère et plus précisément les gouttelettes de nuage est un des milieux les plus concentrés et réactifs de l’atmosphère au sein duquel les composés présents peuvent subir de nombreuses transformations, principalement par voie photochimique. De plus, elle a la propriété d’être oxydante due à la présence d’espèces radicalaires telles qu’OH ou HO2 et de composés tels que le peroxyde d’hydrogène et le fer.La présence avérée de microorganismes métaboliquement actifs dans l’atmosphère a soulevé de nombreuses questions et plus récemment sur leur rôle dans les processus atmosphériques. Ces organismes pourraient modifier la composition des nuages en utilisant comme substrat les composés carbonés représentant une part importante des composés présents dans les nuages. De plus, ils sont suspectés de jouer un rôle dans la capacité oxydante des nuages en impactant des composés clés de la réactivité chimique tels que le fer ou le peroxyde d’hydrogène. L’objectif de ces travaux de thèse était de se focaliser sur les interactions des microorganismes avec deux espèces oxydantes de la phase aqueuse des nuages, le fer et le peroxyde d’hydrogène.Tout d’abord, un intérêt particulier a été porté au cycle du fer et à sa complexation dans les nuages, de nature encore très incertaine à ce jour. Dans l’idée d’apporter des premiers éléments de réponse quant à cette complexation, un large screening réalisé sur des microorganismes des nuages a été effectué afin d’évaluer leur capacité à produire des sidérophores. Les résultats obtenus suggèrent l’éventuelle présence de sidérophores dans les eaux de nuage comme molécules chélatantes du fer(III) ce qui pourrait impacter la chimie du fer dans la phase aqueuse des nuages.Il a ensuite été question de s’intéresser au peroxyde d’hydrogène. Dans une première approche, les paramètres et mécanismes responsables de la transformation biotique et abiotique de H2O2 dans les eaux de nuage ont été étudiés, ainsi que ses effets sur le métabolisme énergétique des microorganismes. Dans une deuxième approche, les modifications du métabolisme microbien face à H2O2 ont été approfondies à travers une approche métabolomique. Les résultats ont ainsi suggéré que le peroxyde d’hydrogène module fortement le métabolisme énergétique des microorganismes des nuages. Les microorganismes sont capables de gérer une condition de stress oxydant mais qu’en même temps ce stress induit une réorganisation de leur métabolisme. Il a également été montré que diverses voies métaboliques telles que le métabolisme des sucres, acides carboxyliques, lipides, acides aminés, peptide et glutathion sont impactées.Intégrer ces données biologiques dans des modèles de chimie atmosphérique pour améliorer la quantification de cette modulation sur la chimie atmosphérique apparait comme une des perspectives les plus importantes à envisager. Pour cela, des constantes cinétiques de biodégradation de quatre composés majeurs des nuages ont été déterminées. Les sorties du modèle nous permettront de mieux évaluer l’impact du métabolisme microbien sur la chimie des nuages. / The aqueous phase of the atmosphere and, more precisely, cloud droplets is one of the most reactive environments of the atmosphere within which the compounds present can be transformed especially by photochemical reactions. In addition, it contains many radical species such as HO, HO2, hydrogen peroxide or iron which explains its oxidizing power.The presence of metabolically active microorganisms in the atmosphere raised many questions and, currently, on their role in atmospheric processes. These organisms could modify the composition of clouds using carbon compounds as substrate that represented an important part of compounds present in clouds. They are also suspected to play a role in the oxidative capacity of clouds by impacting key compounds of chemical reactivity such as iron or hydrogen peroxide.The objective of this work was to focus on the interactions between cloud microorganisms and two oxidant species of clouds aqueous phase, iron and hydrogen peroxide.First, the cycling of iron and its complexation still very uncertain was studied. In order to provide responses we achieved a screening to evaluate the capacity of cloud microorganisms to produce siderophores. The results obtained suggest the possible presence of siderophores in cloud water as chelating molecules of iron (III) which could have a strong impact on iron chemistry in cloud aqueous phase.Then, we focused on hydrogen peroxide. The parameters and mechanisms responsible for the biotic and abiotic transformation of H2O2 in cloud water were studied, as well as its effects on energetic metabolism of microorganisms. The modifications of the microbial metabolism in the presence of H2O2 were pursued using metabolomics. The results suggest that H2O2 strongly modulate the energetic metabolism of cloud microorganisms. They are able to handle oxidative stress conditions but at the same time this stress induces a reorganization of their metabolism. Various metabolic pathways such as sugar, carboxylic acids, lipids, amino acids, peptide and glutathione metabolism are impacted.One of the important perspectives to consider is the integration of these biological data into atmospheric chemistry models in order to improve the quantification of this modulation on atmospheric chemistry. For this, biodegradation rate constants of four major compounds present in clouds were determined. The output will allow us to assess better the impact of microbial metabolism on clouds chemistry.
Identifer | oai:union.ndltd.org:theses.fr/2017CLFAC101 |
Date | 27 April 2017 |
Creators | Wirgot, Nolwenn |
Contributors | Clermont Auvergne, Delort, Anne-Marie |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds