Motion planning consists of finding a feasible path of an object between an initial state and a goal state, and commonly constitutes a sub-system of a larger autonomous system. Motion planners that utilize sampling-based algorithms create an implicit representation of the search space via sampling said search space. Autonomous systems that rely on real-time motion planning benefit from the ability of these algorithms to quickly compute paths that are optimal or near optimal. For sampling-based motion planning algorithms, the sampling strategy greatly affects the convergence speed of finding these paths, i.e., how the sampling distribution is shaped within the search space. In baseline approaches, the samples may be drawn with uniform probability over this space. This thesis project explores a learning-based approach that can utilize experience from previous successful motion plans to provide useful information in novel planning scenarios, as a means of improvement over conventional motion planning methods. Specifically, the focus has been on learning the sampling distributions in both the state space and the control space of an autonomous ground vehicle. The innovatory parts of this work consist of (i) learning the control space sampling distributions, and (ii) learning said distributions for a tractor-trailer system. At the core of the method is an artificial neural network consisting of a conditional variational autoencoder. This artificial neural network is capable of learning suitable sampling distributions in both the state space and control space of a vehicle in different planning scenarios. The method is tested in four different environments and for two kinds of vehicles. Evaluation is partly done by comparison of results with a conventional motion planning algorithm. These evaluations indicates that the artificial neural network can produce valuable information in novel planning scenarios. Future work, primarily on how the artificial neural network may be applied to motion planning algorithms, is necessary to draw further conclusions. / Rörelseplanering består av att hitta en genomförbar bana för ett objekt mellan ett initialtillstånd och ett måltillstånd, och utgör vanligtvis ett delsystem av ett större autonomt system. Rörelseplanerare som använder provtagningssbaserade algoritmer skapar en implicit representation av sökutrymmet via provtagning av sökutrymmet. Autonoma system som förlitar sig på rörelseplanering i realtid drar nytta av dessa algoritmers förmåga att snabbt beräkna banor som är optimala eller nästan optimala. För provtagningssbaserade rörelseplaneringsalgoritmer påverkar provtagningsstrategin i hög grad konvergenshastigheten för att hitta dessa vägar, dvs. hur provtagningsfördelningen är formad inom sökutrymmet. I standardmetoder kan stickproven dras med jämn sannolikhet över detta utrymme. Detta examensarbete utforskar en lärande-baserat metod som kan utnyttja erfarenheter från tidigare lyckade rörelseplaner för att tillhandahålla användbar information i nya planeringsscenarier, som ett medel för förbättring jämfört med konventionella rörelseplaneringsmetoder. Specifikt har fokus legat på att lära sig provtagningssfördelningarna i både tillståndsrummet och styrsignals-rummet för ett autonomt markfordon. De nyskapande delarna av detta arbete består av att (i) lära sig kontrollutrymmessamplingsfördelningarna, och (ii) inlärning av nämnda provtagningsfördelningarna för ett traktor-släpsystem. Kärnan i metoden är ett artificiellt neuralt nätverk bestående av en conditional variational autoencoder. Detta artificiella neurala nätverk är kapabelt att lära sig lämpliga provtagningsfördelningar i både tillståndsrummet och kontrollrummet för ett fordon i olika planeringsscenarier. Metoden testas i fyra olika miljöer och för två olika av fordon. Utvärdering görs delvis genom jämförelse av resultat med en konventionell rörelseplaneringsalgoritm. Dessa utvärderingar tyder på att det artificiella neurala nätverket kan producera värdefull information i nya planeringsscenarier. Mer forskning, i första hand med hur det artificiella neurala nätverket kan tillämpas på rörelseplaneringsalgoritmer, är nödvändigt för att dra ytterligare slutsatser.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-321129 |
Date | January 2022 |
Creators | Palfelt, Oscar |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:562 |
Page generated in 0.0029 seconds