• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 2
  • Tagged with
  • 21
  • 21
  • 20
  • 20
  • 17
  • 16
  • 14
  • 14
  • 13
  • 9
  • 7
  • 6
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Artificiell intelligens (AI), självkörande fordon och lagöverträdelser : Kan någon hållas straffrättsligt ansvarig?

Larsson, Daniel January 2016 (has links)
Eftersom det under de senaste åren skett en explosionsartad utveckling av deep learning och AI är det av intresse att utreda hur det svenska straffrättssystemet klarar av denna teknikutveckling. Frågan uppstår om vem som ska hållas straffrättsligt ansvarig när AI begår lagöverträdelser. Det finns, så vitt jag har funnit, ytterst lite skrivet om just denna problematik. Jag strävar emellertid inte efter att besvara hur problemen med AI ska lösas överlag eftersom detta skulle blir alldeles för omfattande för denna uppsats. Istället kommer frågan om vem som kan hållas straffrättsligt ansvarig när AI begår lagöverträdelser att utredas genom två fiktiva exempel om vållande till annans död. I var sitt exemplen har två självkörande fordon, ett som kräver mänsklig övervakning samt ett som saknar både ratt och pedaler, krockat med en annan trafikant.  De potentiella gärningsmännen i exemplen är det självkörande fordons AI som inte bromsar, den fysiska personen i fordonet som aktiverar autopiloten och sedan inte själv bromsar, och någon person i det företag som tillverkar eller säljer det självkörande fordonet. Varje gärningsman måste begå en egen otillåten gärning eftersom det annars skulle bli vikarierande ansvar, dvs. att någon döms för någon annans gärning. Uppsatsen behandlar bl.a. underlåtenhet och företagaransvar.
2

Environment Perception for Autonomous Driving : A 1/10 Scale Implementation Of Low Level Sensor Fusion Using Occupancy Grid Mapping

Rawat, Pallav January 2019 (has links)
Autonomous Driving has recently gained a lot of recognition and provides challenging research with an aim to make transportation safer, more convenient and efficient. This emerging technology also has widespread applications and implications beyond all current expectations in other fields of robotics. Environment perception is one of the big challenges for autonomous robots. Though a lot of methods have been developed to utilize single sensor based approaches, since different sensor types have different operational characteristics and failure modes, they compliment each other. Different sensors provide different sets of data, which creates difficulties combining information to form a unified picture. The proposed solution consists of low level sensor fusion of LIDAR and stereo camera data using an occupancy grid framework. Bayesian inference theory is utilized and a real time system has been implemented on a 1/10 scale robot vehicle. The result of the thesis shows that it is possible to use a 2D LIDAR and stereo camera to build a map of the environment. The implementation focuses on the practical issues like blind spots of individ sensors. Overall, the fused occupancy grid gives better result than occupancy grids from individual sensors. Sensor confidence is higher for the camera since frequency of mapping of a 2D LIDAR is low / Autonom körning har nyligen fått mycket erkännande och erbjuder utmanande forskningsmöjligheter med målen att göra transporter säkrare, bekvämare och effektivare. Den framväxande tekniken har också tillämpningar och konsekvenser inom andra områden av robotteknik i en omfattning som vida överträffat förväntningarna. Att uppfatta den omgivande miljön är en av de stora utmaningarna för autonoma robotar. Även om många metoder har utvecklats där en enda sensor används, har de bästa resultaten uppnåtts genom en kombination av sensorer. Olika sensorer ger olika uppsättningar data, vilket skapar svårigheter att kombinera information för att bilda en enhetlig bild. Den föreslagna lösningen består av lågfrekvent sensorfusion av LIDAR och stereokamera med användning av rutnätsramar. Bayesisk inferensteori har använts och ett realtidssystem har implementerats på robotfordon i skala 1/10. Resultatet av examensarbetet visar att det är möjligt att använda en 2D-LIDAR och en stereokamera för att bygga en omgivningskarta. Genomförandet fokuserar på praktiska problem såsom problem med döda vinkeln hos dessa sensorer. Generellt ger det kombinerade rutnätet bättre resultat än det från enskilda sensorer. Sensortillförlitligheten är högre för kameran då 2D-LIDAR kartlägger med mycket lägre frekvens
3

Data-Driven Motion Planning : With Application for Heavy Duty Vehicles / Datadriven rörelseplanering : Med tillämpning för tunga fordon

Palfelt, Oscar January 2022 (has links)
Motion planning consists of finding a feasible path of an object between an initial state and a goal state, and commonly constitutes a sub-system of a larger autonomous system. Motion planners that utilize sampling-based algorithms create an implicit representation of the search space via sampling said search space. Autonomous systems that rely on real-time motion planning benefit from the ability of these algorithms to quickly compute paths that are optimal or near optimal. For sampling-based motion planning algorithms, the sampling strategy greatly affects the convergence speed of finding these paths, i.e., how the sampling distribution is shaped within the search space. In baseline approaches, the samples may be drawn with uniform probability over this space. This thesis project explores a learning-based approach that can utilize experience from previous successful motion plans to provide useful information in novel planning scenarios, as a means of improvement over conventional motion planning methods. Specifically, the focus has been on learning the sampling distributions in both the state space and the control space of an autonomous ground vehicle. The innovatory parts of this work consist of (i) learning the control space sampling distributions, and (ii) learning said distributions for a tractor-trailer system. At the core of the method is an artificial neural network consisting of a conditional variational autoencoder. This artificial neural network is capable of learning suitable sampling distributions in both the state space and control space of a vehicle in different planning scenarios. The method is tested in four different environments and for two kinds of vehicles. Evaluation is partly done by comparison of results with a conventional motion planning algorithm. These evaluations indicates that the artificial neural network can produce valuable information in novel planning scenarios. Future work, primarily on how the artificial neural network may be applied to motion planning algorithms, is necessary to draw further conclusions. / Rörelseplanering består av att hitta en genomförbar bana för ett objekt mellan ett initialtillstånd och ett måltillstånd, och utgör vanligtvis ett delsystem av ett större autonomt system. Rörelseplanerare som använder provtagningssbaserade algoritmer skapar en implicit representation av sökutrymmet via provtagning av sökutrymmet. Autonoma system som förlitar sig på rörelseplanering i realtid drar nytta av dessa algoritmers förmåga att snabbt beräkna banor som är optimala eller nästan optimala. För provtagningssbaserade rörelseplaneringsalgoritmer påverkar provtagningsstrategin i hög grad konvergenshastigheten för att hitta dessa vägar, dvs. hur provtagningsfördelningen är formad inom sökutrymmet. I standardmetoder kan stickproven dras med jämn sannolikhet över detta utrymme. Detta examensarbete utforskar en lärande-baserat metod som kan utnyttja erfarenheter från tidigare lyckade rörelseplaner för att tillhandahålla användbar information i nya planeringsscenarier, som ett medel för förbättring jämfört med konventionella rörelseplaneringsmetoder. Specifikt har fokus legat på att lära sig provtagningssfördelningarna i både tillståndsrummet och styrsignals-rummet för ett autonomt markfordon. De nyskapande delarna av detta arbete består av att (i) lära sig kontrollutrymmessamplingsfördelningarna, och (ii) inlärning av nämnda provtagningsfördelningarna för ett traktor-släpsystem. Kärnan i metoden är ett artificiellt neuralt nätverk bestående av en conditional variational autoencoder. Detta artificiella neurala nätverk är kapabelt att lära sig lämpliga provtagningsfördelningar i både tillståndsrummet och kontrollrummet för ett fordon i olika planeringsscenarier. Metoden testas i fyra olika miljöer och för två olika av fordon. Utvärdering görs delvis genom jämförelse av resultat med en konventionell rörelseplaneringsalgoritm. Dessa utvärderingar tyder på att det artificiella neurala nätverket kan producera värdefull information i nya planeringsscenarier. Mer forskning, i första hand med hur det artificiella neurala nätverket kan tillämpas på rörelseplaneringsalgoritmer, är nödvändigt för att dra ytterligare slutsatser.
4

Knowledge Distillation for Semantic Segmentation and Autonomous Driving. : Astudy on the influence of hyperparameters, initialization of a student network and the distillation method on the semantic segmentation of urban scenes.

Sanchez Nieto, Juan January 2022 (has links)
Reducing the size of a neural network whilst maintaining a comparable performance is an important problem to be solved since the constrictions on resources of small devices make it impossible to deploy large models in numerous real-life scenarios. A prominent example is autonomous driving, where computer vision tasks such as object detection and semantic segmentation need to be performed in real time by mobile devices. In this thesis, the knowledge and spherical knowledge distillation techniques are utilized to train a small model (PSPNet50) under the supervision of a large model (PSPNet101) in order to perform semantic segmentation of urban scenes. The importance of the distillation hyperparameters is studied first, namely the influence of the temperature and the weights of the loss function on the performance of the distilled model, showing no decisive advantage over the individual training of the student. Thereafter, distillation is performed utilizing a pretrained student, revealing a good improvement in performance. Contrary to expectations, the pretrained student benefits from a high learning rate when training resumes under distillation, especially in the spherical knowledge distillation case, displaying a superior and more stable performance when compared to the regular knowledge distillation setting. These findings are validated by several experiments conducted using the Cityscapes dataset. The best distilled model achieves 87.287% pixel accuracy and a 42.0% mean Intersection-Over-Union value (mIoU) on the validation set, higher than the 86.356% pixel accuracy and 39.6% mIoU obtained by the baseline student. On the test set, the official evaluation obtained by submission to the Cityscapes website yields 42.213% mIoU for the distilled model and 41.085% for the baseline student. / Att minska storleken på ett neuralt nätverk med bibehållen prestanda är ett viktigt problem som måste lösas, eftersom de begränsade resurserna i små enheter gör det omöjligt att använda stora modeller i många verkliga situationer. Ett framträdande exempel är autonom körning, där datorseende uppgifter som objektsdetektering och semantisk segmentering måste utföras i realtid av mobila enheter. I den här avhandlingen används tekniker för destillation av kunskap och sfärisk kunskap för att träna en liten modell (PSPNet50) under övervakning av en stor modell (PSPNet101) för att utföra semantisk segmentering av stadsscener. Betydelsen av hyperparametrarna för destillation studeras först, nämligen temperaturens och förlustfunktionens vikter för den destillerade modellens prestanda, vilket inte visar någon avgörande fördel jämfört med individuell träning av eleven. Därefter utförs destillation med hjälp av en utbildad elev, vilket visar på en god förbättring av prestanda. Tvärtemot förväntningarna har den utbildade eleven en hög inlärningshastighet när utbildningen återupptas under destillation, särskilt i fallet med sfärisk kunskapsdestillation, vilket ger en överlägsen och stabilare prestanda jämfört med den vanliga kunskapsdestillationssituationen. Dessa resultat bekräftas av flera experiment som utförts med hjälp av datasetet Cityscapes. Den bästa destillerade modellen uppnår 87.287% pixelprecision och ett 42.0% medelvärde för skärning över union (mIoU) på valideringsuppsättningen, vilket är högre än de 86.356% pixelprecision och 39.6% mIoU som uppnåddes av grundstudenten. I testuppsättningen ger den officiella utvärderingen som gjordes på webbplatsen Cityscapes 42.213% mIoU för den destillerade modellen och 41.085% för grundstudenten.
5

Konceptuell utveckling av interiören hos en framtida fullt autonom bil / Conceptual development of an interior in a future fully autonomous car

Edvardsson, Felicia, Warberg, Therése January 2016 (has links)
Målet med examensarbetet har varit att samla information åt ett tekniskt konsultföretag för att öka deras kunskap om autonoma system och fordonskommunikation. Statusen på arbetet kring dessa aktiva säkerhetssystem hos olika aktörer och hur systemen implementeras i dagens och framtidens fordon har undersökts genom omfattande litteraturstudier, intervjuer och marknadsanalyser. De autonoma systemen kan samla information från omgivningen genom sensorer och bidra till ett jämnare trafikflöde, ökad säkerhet, lättare bilar och bättre miljö. Genom fordonskommunikationen kan fordon kommunicera med varandra samt infrastrukturen och garantera en säker bilfärd. År 2030 utgörs innerstaden av autonom, elektrifierad kollektivtrafik för att transportera människor på begäran, samtidigt som personbilar till viss del förbjuds. Potentiella behov för människan i en fullt autonom bil har identifierats och diverse produktutvecklingsmetoder har tillämpats för att utforma två konceptuella lösningar för en framtida bilinteriör. Lösningarna visar interaktionen mellan människa och system eftersom underhållning och bekvämlighet blir viktigt i en fullt autonom bil. Respektive lösning är statsägd och rymmer fyra passagerare. I lösningarna är sittplatserna placerade på ett sätt som underlättar kommunikation mellan passagerarna. Passagerarna kan underhållas eller informeras individuellt eller gemensamt via text, ljud och bild. / The goal with this thesis project has been to collect information for a technical consulting company in order to increase their knowledge about autonomous systems and vehicular communication. The status of how various operators work with active safety systems and how the systems are implemented in current and future vehicles has been investigated through extensive literature studies, interviews and market research. The autonomous systems can collect information from the surrounding through sensors and contribute to better traffic efficiency, increased safety, lighter cars and a better environment. Through vehicle communication, the vehicle can communicate with each other in order to guarantee a safe ride. In 2030 the inner city constitutes of autonomous, electrified public transport to transport people on demand, meanwhile private cars are prohibited. Potential needs for the human in a fully, autonomous car has been identified and various product development methods has been applied in order to develop two conceptual solutions for a future car interior. The solutions show the interaction between human and system since entertainment and comfort becomes important in a fully, autonomous car. Each solution is state-owned and holds four passengers. In the solutions, the seats are placed in regard to facilitate communication between the passengers. The passengers can be entertained or informed individually or collectively by text, sound and images.
6

Learning from Synthetic Data : Towards Effective Domain Adaptation Techniques for Semantic Segmentation of Urban Scenes / Lärande från Syntetiska Data : Mot Effektiva Domänanpassningstekniker för Semantisk Segmentering av Urbana Scener

Valls I Ferrer, Gerard January 2021 (has links)
Semantic segmentation is the task of predicting predefined class labels for each pixel in a given image. It is essential in autonomous driving, but also challenging because training accurate models requires large and diverse datasets, which are difficult to collect due to the high cost of annotating images at pixel-level. This raises interest in using synthetic images from simulators, which can be labelled automatically. However, models trained directly on synthetic data perform poorly in real-world scenarios due to the distributional misalignment between synthetic and real images (domain shift). This thesis explores the effectiveness of several techniques for alleviating this issue, employing Synscapes and Cityscapes as the synthetic and real datasets, respectively. Some of the tested methods exploit a few additional labelled real images (few-shot supervised domain adaptation), some have access to plentiful real images but not their associated labels (unsupervised domain adaptation), and others do not take advantage of any image or annotation from the real domain (domain generalisation). After extensive experiments and a thorough comparative study, this work shows the severity of the domain shift problem by revealing that a semantic segmentation model trained directly on the synthetic dataset scores a poor mean Intersection over Union (mIoU) of 33:5% when tested on the real dataset. This thesis also demonstrates that such performance can be boosted by 25:7% without accessing any annotations from the real domain and 17:3% without leveraging any information from the real domain. Nevertheless, these gains are still inferior to the 31:0% relative improvement achieved with as little as 25 supplementary labelled real images, which suggests that there is still room for improvement in the fields of unsupervised domain adaptation and domain generalisation. Future work efforts should focus on developing better algorithms and creating synthetic datasets with a greater diversity of shapes and textures in order to reduce the domain shift. / Semantisk segmentering är uppgiften att förutsäga fördefinierade klassetiketter för varje pixel i en given bild. Det är viktigt för autonom körning, men också utmanande eftersom utveckling av noggranna modeller kräver stora och varierade datamängder, som är svåra att samla in på grund av de höga kostnaderna för att märka bilder på pixelnivå. Detta väcker intresset att använda syntetiska bilder från simulatorer, som kan märkas automatiskt. Problemet är emellertid att modeller som tränats direkt på syntetiska data presterar dåligt i verkliga scenarier på grund av fördelningsfel mellan syntetiska och verkliga bilder (domänskift). Denna avhandling undersöker effektiviteten hos flera tekniker för att lindra detta problem, med Synscapes och Cityscapes som syntetiska respektive verkliga datamängder. Några av de testade metoderna utnyttjar några ytterligare märkta riktiga bilder (few-shot övervakad domänanpassning), vissa har tillgång till många riktiga bilder men inte deras associerade etiketter (oövervakad domänanpassning), och andra drar inte nytta av någon bild eller annotering från den verkliga domänen (domängeneralisering). Efter omfattande experiment och en grundlig jämförande studie visar detta arbete svårighetsgraden av domänskiftproblemet genom att avslöja att en semantisk segmenteringsmodell som upplärts direkt på den syntetiska datauppsättningen ger en dålig mean Intersection over Union (mIoU) på 33; 5% när den testas på den verkliga datamängden. Denna avhandling visar också att sådan prestanda kan ökas med 25; 7% utan att komma åt några annoteringar från den verkliga domänen och 17; 3% utan att utnyttja någon information från den verkliga domänen. Ändå är dessa vinster fortfarande sämre än den 31; 0% relativa förbättringen som uppnåtts med så lite som 25 kompletterande annoterade riktiga bilder, vilket tyder på att det fortfarande finns utrymme för förbättringar inom områdena oövervakad domänanpassning och domängeneralisering. Framtida arbetsinsatser bör fokusera på att utveckla bättre algoritmer och på att skapa syntetiska datamängder med en större mångfald av former och texturer för att minska domänskiftet.
7

Model Based Systems Engineering Approach to Autonomous Driving : Application of SysML for trajectory planning of autonomous vehicle

Veeramani Lekamani, Sarangi January 2018 (has links)
Model Based Systems Engineering (MBSE) approach aims at implementing various processes of Systems Engineering (SE) through diagrams that provide different perspectives of the same underlying system. This approach provides a basis that helps develop a complex system in a systematic manner. Thus, this thesis aims at deriving a system model through this approach for the purpose of autonomous driving, specifically focusing on developing the subsystem responsible for generating a feasible trajectory for a miniature vehicle, called AutoCar, to enable it to move towards a goal. The report provides a background on MBSE and System Modeling Language (SysML) which is used for modelling the system. With this background, an MBSE framework for AutoCar is derived and the overall system design is explained. This report further explains the concepts involved in autonomous trajectory planning followed by an introduction to Robot Operating System (ROS) and its application for trajectory planning of the system. The report concludes with a detailed analysis on the benefits of using this approach for developing a system. It also identifies the shortcomings of applying MBSE to system development. The report closes with a mention on how the given project can be further carried forward to be able to realize it on a physical system. / Modellbaserade systemteknikens (MBSE) inriktning syftar till att implementera de olika processerna i systemteknik (SE) genom diagram som ger olika perspektiv på samma underliggande system. Detta tillvägagångssätt ger en grund som hjälper till att utveckla ett komplext system på ett systematiskt sätt. Sålunda syftar denna avhandling att härleda en systemmodell genom detta tillvägagångssätt för autonom körning, med särskild inriktning på att utveckla delsystemet som är ansvarigt för att generera en genomförbar ban för en miniatyrbil, som kallas AutoCar, för att göra det möjligt att nå målet. Rapporten ger en bakgrund till MBSE and Systemmodelleringsspråk (SysML) som används för modellering av systemet. Med denna bakgrund, MBSE ramverket för AutoCar är härledt och den övergripande systemdesignen förklaras. I denna rapport förklaras vidare begreppen autonom banplanering följd av en introduktion till Robot Operating System (ROS) och dess tillämpning för systemplanering av systemet. Rapporten avslutas med en detaljerad analys av fördelarna med att använda detta tillvägagångssätt för att utveckla ett system. Det identifierar också bristerna för att tillämpa MBSE på systemutveckling. Rapporten stänger med en omtale om hur det givna projektet kan vidarebefordras för att kunna realisera det på ett fysiskt system.
8

Dynamic Object Removal for Point Cloud Map Creation in Autonomous Driving : Enhancing Map Accuracy via Two-Stage Offline Model / Dynamisk objekt borttagning för skapande av kartor över punktmoln vid autonom körning : Förbättrad kartnoggrannhet via tvåstegs offline-modell

Zhou, Weikai January 2023 (has links)
Autonomous driving is an emerging area that has been receiving an increasing amount of interest from different companies and researchers. 3D point cloud map is a significant foundation of autonomous driving as it provides essential information for localization and environment perception. However, when trying to gather road information for map creation, the presence of dynamic objects like vehicles, pedestrians, and cyclists will add noise and unnecessary information to the final map. In order to solve the problem, this thesis presents a novel two-stage model that contains a scan-to-scan removal stage and a scan-to-map generation stage. By designing the new three-branch neural network and new attention-based fusion block, the scan-to-scan part achieves a higher mean Intersection-over-Union (mIoU) score. By improving the ground plane estimation, the scan-to-map part can preserve more static points while removing a large number of dynamic points. The test on SemanticKITTI dataset and Scania dataset shows our two-stage model outperforms other baselines. / Autonom körning är ett nytt område som har fått ett allt större intresse från olika företag och forskare. Kartor med 3D-punktmoln är en viktig grund för autonom körning eftersom de ger viktig information för lokalisering och miljöuppfattning. När man försöker samla in väginformation för kartframställning kommer dock närvaron av dynamiska objekt som fordon, fotgängare och cyklister att lägga till brus och onödig information till den slutliga kartan. För att lösa problemet presenteras i den här avhandlingen en ny tvåstegsmodell som innehåller ett steg för borttagning av skanningar och ett steg för generering av skanningar och kartor. Genom att utforma det nya neurala nätverket med tre grenar och det nya uppmärksamhetsbaserade fusionsblocket uppnår scan-to-scan-delen högre mean Intersection-over-Union (mIoU)-poäng. Genom att förbättra uppskattningen av markplanet kan skanning-till-kartor-delen bevara fler statiska punkter samtidigt som ett stort antal dynamiska punkter avlägsnas. Testet av SemanticKITTI-dataset och Scania-dataset visar att vår tvåstegsmodell överträffar andra baslinjer.
9

Occlusion-Aware Autonomous Highway Driving : Tracking safe velocity bounds on potential hidden traffic for improved trajectory planning / Skymd-sikt-medveten autonom motorvägskörning : Bestämning av säkra hastighetsgränser för möjlig skymd trafik för förbättrad banplanering

van Haastregt, Jonne January 2023 (has links)
In order to reach higher levels of autonomy in autonomous driving, it is important to consider potential occluded traffic participants. Current research has considered occlusion-aware autonomous driving in urban situations. However, no implementations have shown good performance in high velocity situations such as highway driving yet, since the current methods are too conservative in these situations and result in frequent excessive braking. In this work a method is proposed that tracks boundaries on the velocity states of potential hidden traffic using reachability analysis. It is proven that the method can guarantee collision-free trajectories for any, potentially hidden, traffic. The method is evaluated on cut-in scenarios retrieved from a dataset of recorded traffic. The results show that tracking the velocity bounds for potentially hidden traffic results in more efficient trajectories up to 18 km/h faster compared to existing occlusion-aware methods. While the method shows clear improvements, it does not always manage to establish a velocity bound and at times excessive braking still occurs. Further work is thus necessary to ensure consistently well-performing occlusion-aware highway driving. / För att nå högre nivåer av autonomi vid autonom körning är det viktigt att ta hänsyn till möjliga skymda trafikanter. Aktuell forskning har övervägt skymd-sikt-medveten autonom körning i urbana situationer. Emellertid har inga implementeringar visat bra prestanda i höghastighetssituationer såsom motorvägskörning ännu, eftersom de nuvarande metoderna är för konservativa i dessa situationer och resulterar i frekventa överdrivna inbromsningar. I detta arbete föreslås en metod som bestämmer gränser för hastighetstillstånden för möjlig skymd trafik med hjälp av nåbarhetsanalys. Det är bevisat att metoden kan garantera kollisionsfria banor för all möjlig skymd trafik. Metoden utvärderas på scenarier hämtade från ett dataset av registrerad trafik. Resultaten visar att bestämning av hastighetsgränserna för möjlig skymd trafik resulterar i effektivare banor upp till 18 km/h snabbare jämfört med befintliga skymd-sikt-medvetna-metoder. Även om metoden visar tydliga förbättringar, lyckas den inte alltid fastställa en hastighetsgräns och ibland förekommer fortfarande överdriven inbromsning. Ytterligare arbete är därför nödvändigt för att säkerställa konsekvent välpresterande motorvägskörning under skymd sikt.
10

SELECTION OF FEATURES FOR ML BASED COMMANDING OF AUTONOMOUS VEHICLES

Sridhar, Sabarish January 2020 (has links)
Traffic coordination is an essential challenge in vehicle automation. The challenge is not only about maximizing the revenue/productivity of a fleet of vehicles, but also about avoiding non feasible states such as collisions and low energy levels, which could make the fleet inoperable. The challenge is hard due to the complex nature of the real time traffic and the large state space involved. Reinforcement learning and simulation-based search techniques have been successful in handling complex problem with large state spaces [1] and can be used as potential candidates for traffic coordination. In this degree project, a variant of these techniques known as Dyna-2 [2] is investigated for traffic coordination. A long term memory of past experiences is approximated by a neural network and is used to guide a Temporal Difference (TD) search. Various features are proposed, evaluated and finally a feature representation is chosen to build the neural network model. The Dyna-2 Traffic Coordinator (TC) is investigated for its ability to provide supervision for handling vehicle bunching and charging. Two variants of traffic coordinators, one based on simple rules and another based on TD search are the existing baselines for the performance evaluation. The results indicate that by incorporating learning via a long-term memory, the Dyna-2 TC is robust to vehicle bunching and ensures a good balance in charge levels over time. The performance of the Dyna-2 TC depends on the choice of features used to build the function approximator, a bad feature choice does not provide good generalization and hence results in bad performance. On the other hand, the previous approaches based on rule-based planning and TD search made poor decisions resulting in collisions and low energy states. The search based approach is comparatively better than the rule-based approach, however it is not able to find an optimal solution due to the depth limitations. With the guidance from a long term memory, the search was able to generate a higher return and ensure a good balance in charge levels. / Trafikkoordinering är en grundläggande utmaning för att autonomisera fordon. Utmaningen ligger inte bara i att maximera inkomsten/produktiviteten hos en fordonsflotta utan även i att undvika olämpliga tillstånd, så som krockar och brist på energi vilka skulle kunna göra flottan obrukbar. Utmaningen är svår på grund av den komplexa naturen hos trafik i realtid och det stora tillståndsrummet som innefattas. Förstärkningsinlärning och simulationsbaserade söktekniker har varit framgångsrika metoder för att hantera komplexa problem med stora tillståndsrum [1] och kan ses som en potentiell kandidat för trafikkoordinering. Detta examensarbete undersöker en variant av dessa tekniker, känd som Dyna-2 [2], applicerat på trafikkoordinering. Ett långsiktigt minne av tidigare erfarenheter approximeras med ett neuron nät och används för att vägleda en Temporal Difference (TD) sökning. Olika attribut föreslås, utvärderas och sätts sedan samman till en representation att bygga nätverket kring. Dyna-2 Trafikkoordinator (TC) undersöks för dess färdighet att ge beslutsstöd för hantering av grupperade fordon och laddning. Två varianter av trafikkoordinerare, en baserad på enkla regler och en baserad på TD-sökningen, används som grund för utvärderingen av prestanda. Resultaten indikerar att genom inkludering av inlärning via ett långsiktigt minne så är Dyna-2 TC en robust metod för att hantera grupperade fordon och ger en god balans av laddningsnivå över tid. Prestandan hos Dyna-2 TC beror på valet av de attribut som används för att bygga approximeringsfunktionen, sämre val av attribut generaliserar inte bra vilket då resulterar i dålig prestanda. Å andra sidan, de tidigare tillvägagånssätten baserade på planering genom regler och TD-sökning tog dåliga beslut vilket resulterade i kollisioner och tillstånd med låga laddningsnivåer. Jämfört med att basera på regler så är den sökbaserade metoden bättre, den lyckades dock inte hitta en optimal lösning på grund av begränsningar hos sökdjupet. Med vägvisning från ett långsiktigt minne så sökningen kunde sökningen generera högre avkastning och säkerställa en god balans hos laddningsnivåerna.

Page generated in 0.0554 seconds