Return to search

Traitements numériques pour l’amélioration de la stabilité des détecteurs spectrométriques à fort flux pour l'imagerie X / FPGA-based algorithms for the stability improvement of high-flux X-ray spectrometric imaging detectors.

L'apparition des détecteurs à comptage de photons X à base de CdTe avec des capacités de discrimination de l'énergie des photons ouvre de nouvelles perspectives pour l'imagerie radiographique. Les applications médicales et en contrôle de bagages X sont caractérisées par un flux de photons X très élevé, et exigent par conséquent une mise en forme très rapide du photo-courant mesuré pour limiter les empilements. Cependant, si cette mise en forme est plus courte que le temps de transit des électrons dans le semi-conducteur, la charge mesurée devient inférieure à la charge déposée : c’est le déficit balistique. Par ailleurs, la variation dans le temps du profil du champ électrique dans le volume du détecteur entraîne une augmentation du temps de transit des électrons. En conséquence, la charge mesurée diminue dans le temps, faussant la mesure de l’énergie des photons X. L’objectif de ce travail est de caractériser cette instabilité et de développer une méthode de correction de son effet sur les spectres en énergie. Nous avons proposé un algorithme de correction basé sur l'utilisation de deux Lignes à Retard (LAR). Une LAR rapide (50ns ?) permet de mesurer les spectres X à très fort flux sans compromis sur le taux de comptage. Une LAR lente (200ns ?) est utilisée pour mesurer intégralement la charge déposée sans déficit balistique. Un facteur de correction est évalué et utilisé pour stabiliser la mesure de l’énergie des X avec la LAR rapide. Une étape importante de cet algorithme consiste à trier les impulsions traitées pour rejeter celles qui peuvent dégrader la mesure de ce facteur de correction, notamment les empilements. La méthode proposée a été implémentée dans un FPGA pour fonctionner en temps réel et a été testée avec un détecteur CdTe de 3mm d'épaisseur avec 4×4 pixels au pas de 800 microns, capable de mesurer des spectres X dans la gamme d'énergie 20-160 keV avec 256 canaux d'énergie. La méthode développée a été initialement testée à faible taux de comptage avec des sources gamma Co-57 et Am-241, puis à fort taux de comptage jusqu'à ~2 Mc/s avec un tube à rayons X. Cet algorithme innovant a montré sa capacité de fournir une réponse stable du détecteur dans le temps sans affecter la résolution d'énergie (7 % à 122 keV) et le temps mort (~70 ns). / The emergence of CdTe Photon Counting Detectors (PCD) with energy discrimination capabilities, opens up new perspectives in X-ray imaging. Medical and security applications are characterized by very high X-ray fluxes and consequently require a very fast shaper in order to limit dead time losses due to pile-up. However, if the shaper is faster than the collection of the charges in the semiconductor, there is a loss of charge called ballistic deficit. Moreover, variations of the electric field profile in the detector over time cause a change in the collection time of the charges. As a result, the conversion gain of the detector will be affected by these variations. The instability of the response is visible over time as a channel shift of the spectra, resulting in a false information of the photon energy. The aim of this work is to characterize this instability in order to understand the mechanisms behind them and to develop a method to correct its effect. We proposed a correction algorithm based on the use of two Single Delay Line (SDL) shaping amplifiers. A fast SDL is used to measure the X-ray spectra at high count rates with limited count rate losses. A slow SDL is used to measure the full collected charge in order estimate a correction factor for the compensation of the ballistic deficit fluctuations of the fast SDL. An important step is to sort the processed pulses in order to reject pile-up and other undesirable effects that may degrade the measurement of the correction factor. The proposed method was implemented in an FPGA in order to correct the ballistic deficit in real-time and to give a stable response of the detector at very high fluxes. The method was tested with a 4x4 pixels detector (CdTe) of 3 mm thickness and 800 micron pitch, which is able to measure transmitted X-ray spectra in the energy range of 20-160 kV on 256 energy bins. The developed method was initially tested at low count rate with a Co-57 and an Am-241 gamma-ray sources, then at high count rates up to ~2 Mc/s with an X-ray source. With the characterization and the validation of this innovative algorithm we prove its ability in providing a stable response of the detector over time without affecting the energy resolution (~7% at 122 keV) and the dead time (~70 ns).

Identiferoai:union.ndltd.org:theses.fr/2018GREAT084
Date17 October 2018
CreatorsDe cesare, Cinzia
ContributorsGrenoble Alpes, Rossetto, Olivier
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0081 seconds