• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Traitements numériques pour l’amélioration de la stabilité des détecteurs spectrométriques à fort flux pour l'imagerie X / FPGA-based algorithms for the stability improvement of high-flux X-ray spectrometric imaging detectors.

De cesare, Cinzia 17 October 2018 (has links)
L'apparition des détecteurs à comptage de photons X à base de CdTe avec des capacités de discrimination de l'énergie des photons ouvre de nouvelles perspectives pour l'imagerie radiographique. Les applications médicales et en contrôle de bagages X sont caractérisées par un flux de photons X très élevé, et exigent par conséquent une mise en forme très rapide du photo-courant mesuré pour limiter les empilements. Cependant, si cette mise en forme est plus courte que le temps de transit des électrons dans le semi-conducteur, la charge mesurée devient inférieure à la charge déposée : c’est le déficit balistique. Par ailleurs, la variation dans le temps du profil du champ électrique dans le volume du détecteur entraîne une augmentation du temps de transit des électrons. En conséquence, la charge mesurée diminue dans le temps, faussant la mesure de l’énergie des photons X. L’objectif de ce travail est de caractériser cette instabilité et de développer une méthode de correction de son effet sur les spectres en énergie. Nous avons proposé un algorithme de correction basé sur l'utilisation de deux Lignes à Retard (LAR). Une LAR rapide (50ns ?) permet de mesurer les spectres X à très fort flux sans compromis sur le taux de comptage. Une LAR lente (200ns ?) est utilisée pour mesurer intégralement la charge déposée sans déficit balistique. Un facteur de correction est évalué et utilisé pour stabiliser la mesure de l’énergie des X avec la LAR rapide. Une étape importante de cet algorithme consiste à trier les impulsions traitées pour rejeter celles qui peuvent dégrader la mesure de ce facteur de correction, notamment les empilements. La méthode proposée a été implémentée dans un FPGA pour fonctionner en temps réel et a été testée avec un détecteur CdTe de 3mm d'épaisseur avec 4×4 pixels au pas de 800 microns, capable de mesurer des spectres X dans la gamme d'énergie 20-160 keV avec 256 canaux d'énergie. La méthode développée a été initialement testée à faible taux de comptage avec des sources gamma Co-57 et Am-241, puis à fort taux de comptage jusqu'à ~2 Mc/s avec un tube à rayons X. Cet algorithme innovant a montré sa capacité de fournir une réponse stable du détecteur dans le temps sans affecter la résolution d'énergie (7 % à 122 keV) et le temps mort (~70 ns). / The emergence of CdTe Photon Counting Detectors (PCD) with energy discrimination capabilities, opens up new perspectives in X-ray imaging. Medical and security applications are characterized by very high X-ray fluxes and consequently require a very fast shaper in order to limit dead time losses due to pile-up. However, if the shaper is faster than the collection of the charges in the semiconductor, there is a loss of charge called ballistic deficit. Moreover, variations of the electric field profile in the detector over time cause a change in the collection time of the charges. As a result, the conversion gain of the detector will be affected by these variations. The instability of the response is visible over time as a channel shift of the spectra, resulting in a false information of the photon energy. The aim of this work is to characterize this instability in order to understand the mechanisms behind them and to develop a method to correct its effect. We proposed a correction algorithm based on the use of two Single Delay Line (SDL) shaping amplifiers. A fast SDL is used to measure the X-ray spectra at high count rates with limited count rate losses. A slow SDL is used to measure the full collected charge in order estimate a correction factor for the compensation of the ballistic deficit fluctuations of the fast SDL. An important step is to sort the processed pulses in order to reject pile-up and other undesirable effects that may degrade the measurement of the correction factor. The proposed method was implemented in an FPGA in order to correct the ballistic deficit in real-time and to give a stable response of the detector at very high fluxes. The method was tested with a 4x4 pixels detector (CdTe) of 3 mm thickness and 800 micron pitch, which is able to measure transmitted X-ray spectra in the energy range of 20-160 kV on 256 energy bins. The developed method was initially tested at low count rate with a Co-57 and an Am-241 gamma-ray sources, then at high count rates up to ~2 Mc/s with an X-ray source. With the characterization and the validation of this innovative algorithm we prove its ability in providing a stable response of the detector over time without affecting the energy resolution (~7% at 122 keV) and the dead time (~70 ns).
2

Développement des nouveaux scintillateurs en couche mince pour l’imagerie par rayons-X à haute résolution / Development of new thin film scintillators for high-resolution X-ray imaging

Riva, Federica 20 October 2016 (has links)
Les détecteurs de rayon-X utilisés pour l'imagerie à haute résolution (micromètrique ou submicronique) utilisés aux synchrotrons sont pour la plupart basés sur un système de détection indirecte. Les rayons X ne sont pas directement convertis en signal électrique. Ils sont absorbés par un scintillateur qui est un matériau émettant de la lumière à la suite de l'absorption d'un rayonnement ionisant. L'image émise sous forme de lumière visible est ensuite projetée par des optiques de microscopie sur une camera 2D de type CCD ou CMOS. De nos jours, il existe différents types des scintillateurs. On distingue entre autres des scintillateurs en poudre compactée, micro structurés, céramique poly-cristalline et monocristalline. L’obtention d’une image de très bonne qualité avec une résolution spatiale au-dessous du micromètre requiert le choix d’une couche mince (1-20 µm) monocristalline. Ces types des scintillateurs peuvent être déposes sur un substrat par épitaxie en phase liquide. La très faible efficacité d’absorption dans une couche mince en fait sa faiblesse, surtout pour des énergies au-dessus de 20 keV. A l’ESRF (le synchrotron européen) des énergies jusqu'à 120 keV peuvent être exploitées pour l’imagerie. Des nouveaux scintillateurs sont donc toujours recherchés pour pouvoir améliorer le compromis entre l’efficacité d’absorption et la résolution spatiale. Dans la première partie de cet travail, un model qui décrit les détecteurs indirects pour la haute résolution, est présenté. Cet model permet de calculer la MTF (fonction de transfert de modulation) du système et peut être utilisé pour trouver la combinaison optimal de scintillateur et d’optique selon l’énergie des rayons X. Les simulations ont guidées le choix des scintillateurs à développer par épitaxie.Dans la deuxième partie, deux nouveaux types de scintillateurs développés et caractérisés dans le cadre de ce projet de thèse sont introduits : les couches minces basées sur des monocristaux de gadolinium lutétium aluminium pérovskite (GdLuAP:Eu) et d’oxyde de lutétium (Lu2O3:Eu) / X-ray detectors for high spatial resolution imaging are mainly based on indirect detection. The detector consists of a converter screen (scintillator), light microscopy optics and a CCD or CMOS camera. The screen converts part of the absorbed X-rays into visible light image, which is projected onto the camera by means of the optics. The detective quantum efficiency of the detector is strongly influenced by the properties of the converter screen (X-ray absorption, spread of energy deposition, light yield and emission wavelength). To obtain detectors with micrometer and sub-micrometer spatial resolution, thin (1-20 µm) single crystal film scintillators are required. These scintillators are grown on a substrate by liquid phase epitaxy. The critical point for these layers is their weak absorption, especially at energies exceeding 20 keV. At the European Synchrotron radiation Facility (ESRF), X-ray imaging applications can exploit energies up to 120 keV. Therefore, the development of new scintillating materials is currently investigated. The aim is to improve the contradictory compromise between absorption and spatial resolution, to increase the detection efficiency while keeping a good image contrast even at high energies.The first part of this work presents a model describing high-resolution detectors which was developed to calculate the modulation transfer function (MTF) of the system as a function of the X-ray energy. The model can be used to find the optimal combination of scintillator and visible light optics for different energy ranges, and it guided the choice of the materials to be developed as SCF scintillators. In the second part, two new kinds of scintillators for high-resolution are presented: the gadolinium-lutetium aluminum perovskite (Gd0.5Lu0.5AlO3:Eu) and the lutetium oxide (Lu2O3:Eu) SCFs

Page generated in 0.0696 seconds