• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement des nouveaux scintillateurs en couche mince pour l’imagerie par rayons-X à haute résolution / Development of new thin film scintillators for high-resolution X-ray imaging

Riva, Federica 20 October 2016 (has links)
Les détecteurs de rayon-X utilisés pour l'imagerie à haute résolution (micromètrique ou submicronique) utilisés aux synchrotrons sont pour la plupart basés sur un système de détection indirecte. Les rayons X ne sont pas directement convertis en signal électrique. Ils sont absorbés par un scintillateur qui est un matériau émettant de la lumière à la suite de l'absorption d'un rayonnement ionisant. L'image émise sous forme de lumière visible est ensuite projetée par des optiques de microscopie sur une camera 2D de type CCD ou CMOS. De nos jours, il existe différents types des scintillateurs. On distingue entre autres des scintillateurs en poudre compactée, micro structurés, céramique poly-cristalline et monocristalline. L’obtention d’une image de très bonne qualité avec une résolution spatiale au-dessous du micromètre requiert le choix d’une couche mince (1-20 µm) monocristalline. Ces types des scintillateurs peuvent être déposes sur un substrat par épitaxie en phase liquide. La très faible efficacité d’absorption dans une couche mince en fait sa faiblesse, surtout pour des énergies au-dessus de 20 keV. A l’ESRF (le synchrotron européen) des énergies jusqu'à 120 keV peuvent être exploitées pour l’imagerie. Des nouveaux scintillateurs sont donc toujours recherchés pour pouvoir améliorer le compromis entre l’efficacité d’absorption et la résolution spatiale. Dans la première partie de cet travail, un model qui décrit les détecteurs indirects pour la haute résolution, est présenté. Cet model permet de calculer la MTF (fonction de transfert de modulation) du système et peut être utilisé pour trouver la combinaison optimal de scintillateur et d’optique selon l’énergie des rayons X. Les simulations ont guidées le choix des scintillateurs à développer par épitaxie.Dans la deuxième partie, deux nouveaux types de scintillateurs développés et caractérisés dans le cadre de ce projet de thèse sont introduits : les couches minces basées sur des monocristaux de gadolinium lutétium aluminium pérovskite (GdLuAP:Eu) et d’oxyde de lutétium (Lu2O3:Eu) / X-ray detectors for high spatial resolution imaging are mainly based on indirect detection. The detector consists of a converter screen (scintillator), light microscopy optics and a CCD or CMOS camera. The screen converts part of the absorbed X-rays into visible light image, which is projected onto the camera by means of the optics. The detective quantum efficiency of the detector is strongly influenced by the properties of the converter screen (X-ray absorption, spread of energy deposition, light yield and emission wavelength). To obtain detectors with micrometer and sub-micrometer spatial resolution, thin (1-20 µm) single crystal film scintillators are required. These scintillators are grown on a substrate by liquid phase epitaxy. The critical point for these layers is their weak absorption, especially at energies exceeding 20 keV. At the European Synchrotron radiation Facility (ESRF), X-ray imaging applications can exploit energies up to 120 keV. Therefore, the development of new scintillating materials is currently investigated. The aim is to improve the contradictory compromise between absorption and spatial resolution, to increase the detection efficiency while keeping a good image contrast even at high energies.The first part of this work presents a model describing high-resolution detectors which was developed to calculate the modulation transfer function (MTF) of the system as a function of the X-ray energy. The model can be used to find the optimal combination of scintillator and visible light optics for different energy ranges, and it guided the choice of the materials to be developed as SCF scintillators. In the second part, two new kinds of scintillators for high-resolution are presented: the gadolinium-lutetium aluminum perovskite (Gd0.5Lu0.5AlO3:Eu) and the lutetium oxide (Lu2O3:Eu) SCFs
2

The advanced developments of the Smart Cut™ technology : fabrication of silicon thin wafers & silicon-on-something hetero-structures / Les développements avancés de la technologie Smart Cut ™ : Fabrication de wafers fins de silicium & de structures hétéro-silicones-sur-quelque chose

Meyer, Raphaël 20 April 2016 (has links)
La thèse porte sur l’étude de la cinétique de Smart Cut™ dans du silicium après implantation hydrogène, pour des températures de recuit comprises entre 500°C et 1300°C. Ainsi, la cinétique de séparation de couches (splitting) est caractérisée en considérant des recuits dans un four à moufle ainsi que des recuits laser. Sur la base de cette caractérisation, un modèle physique, basé sur le comportement de l’hydrogène implanté durant le recuit, est proposé. Le modèle s’appuie sur des caractérisations SIMS de l’évolution de la concentration d’hydrogène durant le recuit, ainsi que sur des simulations numériques. Le modèle propose une explication aux propriétés des films obtenus en fonction des conditions de recuit et mesurées par microscopie optique, AFM ainsi que par des mesures des énergies d’interfaces. Sur la base du modèle de splitting obtenu, deux procédés de fabrication de films de silicium sont proposés pour l’élaboration de matériaux de silicium sur saphir et verre par recuit laser ainsi que pour l’élaboration de feuilles de silicium monocristallin par épitaxie en phase liquide sur substrat silicium implanté. L’étude de premier procédé prouve pour la première fois la possibilité d’appliquer le procédé Smart Cut™ sur des substrats de silicium implanté. Les films ainsi obtenus présentent des grandes surfaces de transfert (wafer de 200 mm), ce qui présente un grand intérêt industriel. L’étude propose différentes caractérisations des films obtenus (AFM, profilométrie optique, mesure 4 pointe). Le deuxième procédé est démontré en utilisant des bancs d’épitaxie en phase liquide de silicium (température supérieure à 1410°C) afin d’effectuer des dépôts sur des substrats de silicium implantés. Les films obtenus montrent un grand degré de croissance épitaxiale (jusqu’à 90% du film déposé mesuré par EBSD) et présentent une épaisseur aussi faible que 100 µm. D’autre part, le détachement par Smart Cut™ des films ainsi déposés est démontré. / At first, the thesis studies the kinetics of Smart Cut™ in silicon implanted with hydrogen ions for annealing temperature in the range 500°C-1300°C. The kinetics is characterized by using a specially-dedicated furnace and by considering laser annealing. Based on the related characterization and observations, a physical model is established based on the behavior of implanted hydrogen during annealing. The model is strengthened by SIMS characterization focused on the evolution of hydrogen during annealing and on numerical calculations. Additionally, the model proposes an explanation for the properties of the obtained films as a function of the annealing conditions, based on optical microscope and AFM observations and bonding energy characterization. Based on this splitting model, two innovative processes for fabrication of silicon films are proposed. The first process allows to produce films of silicon on sapphire and films of silicon on glass by considering a laser annealing. The second produces foils of monocrystalline silicon by liquid phase epitaxial growth on implanted silicon substrate. The study of the first process proves for the first time the possibility to apply the Smart Cut™ for substrates of implanted silicon. The resulting films present large surface of transferred films (up to 200 mm wafers), which is very interesting in an industrial perspective. The study proposes different characterization of the films obtained by this process (AFM, optical profilometry and 4 probe measurement). The second process is demonstrated by using a chamber of liquid phase epitaxial growth of silicon (deposition temperature superior to 1410°C) in order to deposit liquid silicon on implanted silicon substrates. The obtained films show a high degree of epitaxial growth (up to 90% of the film as characterized by EBSD) and show a thickness as low as 100µm. Additionally the detachment by Smart Cut of the deposited films is demonstrated.

Page generated in 0.0747 seconds