Approved for public release; distribution in unlimited. / This study analyzes the effective use of multiple unmanned aerial vehicles (UAVs) for the Navy's Surface Search and Control mission. In the future, the Navy hopes to leverage the capabilities of a family of UAVs to provide increased situational awareness in the maritime environment. This family of UAVs includes a Broad Area Maritime Surveillance (BAMS) UAV and Vertical Take-Off UAVs (VTUAVs). The concepts of operations for how these UAVs work together have yet to be determined. Questions exist about the best number of UAVs, types of UAVs, and tactics that will provide increased capabilities. Through modeling and agent-based simulation, this study explores the validity of future UAV requirements and provides insights into the effectiveness of different UAV combinations. For the scenarios modeled, the best UAV combination is BAMS plus two or three VTUAVs. However, analysis shows that small numbers of VTUAVs can perform as well without BAMS as they do with BAMS. For combinations with multiple UAVs, BAMS proves to be a valuable asset that not only reduces the number of missed classifications, but greatly improves the amount of coverage on all contacts in the maritime environment. BAMS tactics have less effect than the mere presence of BAMS itself. / Lieutenant, United States Navy
Identifer | oai:union.ndltd.org:nps.edu/oai:calhoun.nps.edu:10945/1318 |
Date | 12 1900 |
Creators | Berner, Robert Andrew |
Contributors | Lucas, Thomas W., Gottfried, Russell, Naval Postgraduate School (U.S.)., Operations Research |
Publisher | Monterey, California. Naval Postgraduate School |
Source Sets | Naval Postgraduate School |
Detected Language | English |
Type | Thesis |
Format | xxii, 154 p. : ill. (some col.), col. maps ;, application/pdf |
Rights | This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States. |
Page generated in 0.0023 seconds