• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A systems approach to model the conceptual design process of vertical take-off unmanned aerial vehicle.

Rathore, Ankush, ankushrathore@yahoo.com January 2006 (has links)
The development and induction in-service of Unmanned Air Vehicles (UAV) systems in a variety of civil, paramilitary and military roles have proven valuable on high-risk missions. These UAVs based on fixed wing configuration concept have demonstrated their operational effectiveness in recent operations. New UAVs based on rotary wing configuration concept have received major attention worldwide, with major resources committed for its research and development. In this thesis, the design process of a rotary-wing aircraft was re-visualised from an unmanned perspective to address the requirements of rotary-wing UAVs - Vertical Take-off UAVs (VTUAV). It investigates the conventional helicopter design methodology for application in UAV design. It further develops a modified design process for VTUAV addressing the requirements of unmanned missions by providing remote command-and-control capabilities. The modified design methodology is automated to address the complex design evaluations and optimisation process. An illustration of the automated design process developed for VTUAVs is provided through a series of inputs of the requirements and specifications, resulting in an output of a proposed VTUAV design configuration for
2

The effective use of multiple unmanned aerial vehicles in surface search and control

Berner, Robert Andrew 12 1900 (has links)
Approved for public release; distribution in unlimited. / This study analyzes the effective use of multiple unmanned aerial vehicles (UAVs) for the Navy's Surface Search and Control mission. In the future, the Navy hopes to leverage the capabilities of a family of UAVs to provide increased situational awareness in the maritime environment. This family of UAVs includes a Broad Area Maritime Surveillance (BAMS) UAV and Vertical Take-Off UAVs (VTUAVs). The concepts of operations for how these UAVs work together have yet to be determined. Questions exist about the best number of UAVs, types of UAVs, and tactics that will provide increased capabilities. Through modeling and agent-based simulation, this study explores the validity of future UAV requirements and provides insights into the effectiveness of different UAV combinations. For the scenarios modeled, the best UAV combination is BAMS plus two or three VTUAVs. However, analysis shows that small numbers of VTUAVs can perform as well without BAMS as they do with BAMS. For combinations with multiple UAVs, BAMS proves to be a valuable asset that not only reduces the number of missed classifications, but greatly improves the amount of coverage on all contacts in the maritime environment. BAMS tactics have less effect than the mere presence of BAMS itself. / Lieutenant, United States Navy
3

Tactical decision aid for unmanned vehicles in maritime missions

Duhan, Daniel P. 03 1900 (has links)
Approved for public release; distribution is unlimited / An increasing number of unmanned vehicles (UV) are being incorporated into maritime operations as organic elements of Expeditionary and Carrier Strike Groups for development of the recognized maritime picture. This thesis develops an analytically-based planning aid for allocating UVs to missions. Inputs include the inventory of UVs, sensors, their performance parameters, and operational scenarios. Operations are broken into mission critical functions: detection, identification, and collection. The model output assigns aggregated packages of UVs and sensors to one of the three functions within named areas of interest. A spreadsheet model uses conservative time-speed-distance calculations, and simplified mathematical models from search theory and queuing theory, to calculate measures of performance for possible assignments of UVs to missions. The spreadsheet model generates a matrix as input to a linear integer program assignment model which finds the best assignment of UVs to missions based on the user inputs and simplified models. The results provide the mission planner with quantitatively-based recommendations for unmanned vehicle mission tasking in challenging scenarios. / Lieutenant, United States Navy

Page generated in 0.0204 seconds