Return to search

Statistical modeling of the human sleep process via physiological recordings

The main objective of this work was the development of a computer-based Expert Sleep Analysis Methodology (ESAM) to aid sleep care physicians in the diagnosis of pre-Parkinson's disease symptoms using polysomnogram data. ESAM is significant because it streamlines the analysis of the human sleep cycles and aids the physician in the identification, treatment, and prediction of sleep disorders.
In this work four aspects of computer-based human sleep analysis were investigated: polysomnogram interpretation, pre-processing, sleep event classification, and abnormal sleep detection. A review of previous developments in these four areas is provided along with their relationship to the establishment of ESAM. Polysomnogram interpretation focuses on the ambiguities found in human polysomnogram analysis when using the rule based 1968 sleep staging manual edited by Rechtschaffen and Kales (R&K). ESAM is presented as an alternative to the R&K approach in human polysomnogram interpretation. The second area, pre-processing, addresses artifact processing techniques for human polysomnograms. Sleep event classification, the third area, discusses feature selection, classification, and human sleep modeling approaches. Lastly, abnormal sleep detection focuses on polysomnogram characteristics common to patients suffering from Parkinson's disease.
The technical approach in this work utilized polysomnograms of control subjects and pre-Parkinsonian disease patients obtained from the Emory Clinic Sleep Disorders Center (ECSDC) as inputs into ESAM. The engineering tools employed during the development of ESAM included the Generalized Singular Value Decomposition (GSVD) algorithm, sequential forward and backward feature selection algorithms, Particle Swarm Optimization algorithm, k-Nearest Neighbor classification, and Gaussian Observation Hidden Markov Modeling (GOHMM).
In this study polysomnogram data was preprocessed for artifact removal and compensation using band-pass filtering and the GSVD algorithm. Optimal features for characterization of polysomnogram data of control subjects and pre-Parkinsonian disease patients were obtained using the sequential forward and backward feature selection algorithms, Particle Swarm Optimization, and k-Nearest Neighbor classification. ESAM output included GOHMMs constructed for both control subjects and pre-Parkinsonian disease patients. Furthermore, performance evaluation techniques were implemented to make conclusions regarding the constructed GOHMM's reflection of the underlying nature of the human sleep cycle.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/33912
Date09 January 2009
CreatorsFairley, Jacqueline Antoinette
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0023 seconds