Return to search

Exploring DeepSEA CNN and DNABERT for Regulatory Feature Prediction of Non-coding DNA

Prediction and understanding of the regulatory effects of non-coding DNA is an extensive research area in genomics. Convolutional neural networks have been used with success in the past to predict regulatory features, making chromatin feature predictions based solely on non-coding DNA sequences. Non-coding DNA shares various similarities with the human spoken language. This makes Language models such as the transformer attractive candidates for deciphering the non-coding DNA language. This thesis investigates how well the transformer model, usually used for NLP problems, predicts chromatin features based on genome sequences compared to convolutional neural networks. More specifically, the CNN DeepSEA, which is used for regulatory feature prediction based on noncoding DNA, is compared with the transformer DNABert. Further, this study explores the impact different parameters and training strategies have on performance. Furthermore, other models (DeeperDeepSEA and DanQ) are also compared on the same tasks to give a broader comparison value. Lastly, the same experiments are conducted on modified versions of the dataset where the labels cover different amounts of the DNA sequence. This could prove beneficial to the transformer model, which can understand and capture longrange dependencies in natural language problems. The replication of DeepSEA was successful and gave similar results to the original model. Experiments used for DeepSEA were also conducted on DNABert, DeeperDeepSEA, and DanQ. All the models were trained on different datasets, and their results were compared. Lastly, a Prediction voting mechanism was implemented, which gave better results than the models individually. The results showed that DeepSEA performed slightly better than DNABert, regarding AUC ROC. The Wilcoxon Signed-Rank Test showed that, even if the two models got similar AUC ROC scores, there is statistical significance between the distribution of predictions. This means that the models look at the dataset differently and might be why combining their prediction presents good results. Due to time restrictions of training the computationally heavy DNABert, the best hyper-parameters and training strategies for the model were not found, only improved. The Datasets used in this thesis were gravely unbalanced and is something that needs to be worked on in future projects. This project works as a good continuation for the paper Whole-genome deep-learning analysis identifies contribution of non-coding mutations to autism risk, Which uses the DeepSEA model to learn more about how specific mutations correlate with Autism Spectrum Disorder. / Arbetet kring hur icke-kodande DNA påverkar genreglering är ett betydande forskningsområde inom genomik. Convolutional neural networks (CNN) har tidigare framgångsrikt använts för att förutsäga reglerings-element baserade endast på icke-kodande DNA-sekvenser. Icke-kod DNA har ett flertal likheter med det mänskliga språket. Detta gör språkmodeller, som Transformers, till attraktiva kandidater för att dechiffrera det icke-kodande DNA-språket. Denna avhandling undersöker hur väl transformermodellen kan förutspå kromatin-funktioner baserat på gensekvenser jämfört med CNN. Mer specifikt jämförs CNN-modellen DeepSEA, som används för att förutsäga reglerande funktioner baserat på icke-kodande DNA, med transformern DNABert. Vidare undersöker denna studie vilken inverkan olika parametrar och träningsstrategier har på prestanda. Dessutom jämförs andra modeller (DeeperDeepSEA och DanQ) med samma experiment för att ge ett bredare jämförelsevärde. Slutligen utförs samma experiment på modifierade versioner av datamängden där etiketterna täcker olika mängder av DNA-sekvensen. Detta kan visa sig vara fördelaktigt för transformer modellen, som kan förstå beroenden med lång räckvidd i naturliga språkproblem. Replikeringen av DeepSEA experimenten var lyckad och gav liknande resultat som i den ursprungliga modellen. Experiment som användes för DeepSEA utfördes också på DNABert, DeeperDeepSEA och DanQ. Alla modeller tränades på olika datamängder, och resultat på samma datamängd jämfördes. Slutligen implementerades en algoritm som kombinerade utdatan av DeepDEA och DNABERT, vilket gav bättre resultat än modellerna individuellt. Resultaten visade att DeepSEA presterade något bättre än DNABert, med avseende på AUC ROC. Wilcoxon Signed-Rank Test visade att, även om de två modellerna fick liknande AUC ROC-poäng, så finns det en statistisk signifikans mellan fördelningen av deras förutsägelser. Det innebär att modellerna hanterar samma information på olika sätt och kan vara anledningen till att kombinationen av deras förutsägelser ger bra resultat. På grund av tidsbegränsningar för träning av det beräkningsmässigt tunga DNABert hittades inte de bästa hyper-parametrarna och träningsstrategierna för modellen, utan förbättrades bara. De datamängder som användes i denna avhandling var väldigt obalanserade, vilket måste hanteras i framtida projekt. Detta projekt fungerar som en bra fortsättning för projektet Whole-genome deep-learning analysis identifies contribution of non-coding mutations to autism risk, som använder DeepSEA-modellen för att lära sig mer om hur specifika DNA-mutationer korrelerar med autismspektrumstörning.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-303572
Date January 2021
CreatorsStachowicz, Jacob
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:565

Page generated in 0.0029 seconds