Return to search

[en] A BIVARIATE GARMA MODEL WITH CONDITIONAL POISSON DISTRIBUTION / [pt] UM MODELO GARMA BIVARIADO COM DISTRIBUIÇÃO CONDICIONAL DE POISSON

[pt] Os modelos lineares generalizados auto regressivos com médias móveis (do inglês GARMA), possibilitam a modelagem de séries temporais de dados de contagem com estrutura de correlação similares aos dos modelos ARMA. Neste trabalho é desenvolvida uma extensão multivariada do modelo GARMA, considerando a especificação de um modelo Poisson bivariado a partir da distribuição de Kocherlakota e Kocherlakota (1992), a qual será denominada de modelo Poisson BGARMA. O modelo proposto é adequado para séries de contagens estacionárias, sendo possível, através de funções de ligação apropriadas, introduzir deterministicamente o efeito de sazonalidade e de tendência. A investigação das propriedades usuais dos estimadores de máxima verossimilhança (viés, eficiência e distribuição) foi realizada através de simulações de Monte Carlo. Com o objetivo de comparar o desempenho e a aderência do modelo proposto, este foi aplicado a dois pares de séries reais bivariadas de dados de contagem. O primeiro par de séries apresenta as contagens mensais de óbitos neonatais para duas faixas de dias de vida. O segundo par de séries refere-se a contagens de acidentes de automóveis diários em dois períodos: vespertino e noturno. Os resultados do modelo proposto, quando comparados com aqueles obtidos através do ajuste de um modelo Gaussiano bivariado Vector Autoregressive (VAR), indicam que o modelo Poisson BGARMA é capaz de capturar de forma adequada as variações de pares de séries de dados de contagem e de realizar previsões com erros aceitáveis, além de produzir previsões probabilísticas para as séries. / [en] Generalized autoregressive linear models with moving average (GARMA) allow the modeling of discrete time series with correlation structure similar to those of ARMA’s models. In this work we developed
an extension of a univariate Poisson GARMA model by considerating the specification of a bivariate Poisson model through the distribution presented on Kocherlakota and Kocherlakota (1992), which will be called
Poisson BGARMA model. The proposed model not only is suitable for stationary discrete series, but also allows us to take into consideration the effect of seasonality and trend. The investigation of the usual properties of the maximum likelihood estimators (bias, efficiency and distribution) was performed using Monte Carlo simulations. Aiming to compare the performance and compliance of the proposed model, it was applied to two pairs of series of bivariate count data. The first pair is the monthly counts of neonatal deaths to two lanes of days. The second pair refers to counts of daily car accidents in two distinct periods: afternoon and evening. The results of our model when compared with those obtained by fitting a bivariate Vector Autoregressive Gaussian model (VAR) indicates that the Poisson BGARMA model is able to proper capture the variability of bivariate vectors of real time series of count data, producing forecasts with acceptable errors and allowing one to obtain probability forecasts.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:22899
Date02 May 2014
CreatorsPRISCILLA FERREIRA DA SILVA
ContributorsHELIO CORTES VIEIRA LOPES
PublisherMAXWELL
Source SetsPUC Rio
LanguagePortuguese
Detected LanguagePortuguese
TypeTEXTO

Page generated in 0.0059 seconds