Return to search

Curve progression in adolescent idiopathic scoliosis: is osteopenia a new and valid prognostic factor?.

Hung Wing Yin Vivian. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 128-142). / Abstracts in English and Chinese ; appendix in Chinese. / ABSTRACT --- p.i / ABSTRACT (in Chinese) --- p.iv / ACKNOWLEDGMENT --- p.vii / TABLE OF CONTENTS --- p.viii / LIST OF TABLES --- p.xiv / LIST OF FIGURES --- p.xvi / LIST OF ABBREVIATIONS --- p.xix / Chapter I. --- INTRODUCTION --- p.1 / Chapter 1.1. --- Scoliosis --- p.1 / Chapter 1.1.1. --- Classification of scoliosis --- p.1 / Chapter 1.1.2. --- Idiopathic scoliosis --- p.1 / Chapter 1.1.3. --- Clinical examination --- p.2 / Chapter 1.1.4. --- Curve pattern --- p.2 / Chapter 1.2. --- Etiology of AIS --- p.3 / Chapter 1.2.1. --- Prevalence of AIS --- p.5 / Chapter 1.2.2. --- Anthropometric Measurement in AIS --- p.5 / Chapter 1.2.3. --- Bone mass --- p.6 / Chapter 1.2.4. --- Bone mineral density measurements --- p.6 / Chapter 1.2.5. --- Osteopenia in AIS --- p.7 / Chapter 1.3. --- Natural history ofAIS --- p.8 / Chapter 1.3.1. --- Curve progression --- p.9 / Chapter 1.3.2. --- Treatment of scoliosis --- p.11 / Chapter 1.4. --- Research questions --- p.12 / Chapter 1.5. --- Objectives --- p.13 / Chapter II. --- METHODOLOGY --- p.20 / Chapter 2.1 --- Study Design --- p.20 / Chapter 2.2 --- Subject recruitment --- p.20 / Chapter 2.2.1 --- AIS patients --- p.20 / Chapter 2.2.2 --- Inclusion criteria --- p.20 / Chapter 2.2.3 --- Exclusion criteria --- p.20 / Chapter 2.2.4 --- Informed consent --- p.21 / Chapter 2.3 --- Grouping for chronological age --- p.21 / Chapter 2.4 --- Radiography assessments --- p.21 / Chapter 2.4.1 --- Cobb angle measurement --- p.21 / Chapter 2.4.2 --- Curve pattern --- p.22 / Chapter 2.4.3 --- Risser grade --- p.22 / Chapter 2.5 --- Definition of curve progression --- p.22 / Chapter 2.6 --- Bone mineral density (BMD) measurements --- p.23 / Chapter 2.6.1 --- Dual energy X-ray Absorptiometry (DXA) --- p.23 / Chapter 2.6.2 --- Peripheral quantitative computed tomography (pQCT) --- p.24 / Chapter 2.6.3 --- Definition of osteopenia or low bone mass --- p.24 / Chapter 2.7 --- Anthropometric measurements --- p.25 / Chapter 2.7.1 --- Body height --- p.25 / Chapter 2.7.2 --- Body weight --- p.26 / Chapter 2.7.3 --- Arm span --- p.26 / Chapter 2.7.4 --- Sitting height --- p.27 / Chapter 2.8 --- Family history --- p.27 / Chapter 2.9 --- Menstrual status --- p.27 / Chapter 2.10 --- Medication and fracture history --- p.27 / Chapter 2.11 --- Statistical analysis --- p.27 / Chapter 2.11.1 --- Sample size power calculation --- p.28 / Chapter 2.11.2 --- Student t test --- p.28 / Chapter 2.11.3 --- Paired t-test --- p.28 / Chapter 2.11.4 --- Predicting the incidence of curve progression --- p.28 / Chapter 2.11.4.1 --- Predictive outcome --- p.28 / Chapter 2.11.4.2 --- Potential risk factors --- p.28 / Chapter 2.11.4.3 --- Coding system for categorical variables --- p.29 / Chapter 2.11.4.4 --- Univariate analysis --- p.30 / Chapter 2.11.4.5 --- Logistic regression --- p.30 / Chapter 2.11.4.6 --- Receiver operating characteristics (ROC) curves --- p.32 / Chapter III. --- RESULTS --- p.54 / Chapter 3.1 --- Patients Characteristics --- p.54 / Chapter 3.1.1 --- Sample size --- p.54 / Chapter 3.1.2 --- Distribution of patient characteristics --- p.54 / Chapter 3.1.3 --- Drop out --- p.54 / Chapter 3.1.4 --- Prevalence of osteopenia (BMDage-adjusted ≤ -1) and low bone mass (BMCage-adjusted ≤ -1) --- p.55 / Chapter 3.1.5 --- Comparison between the BMD of the bilateral hip and tibia --- p.55 / Chapter 3.2 --- Comparison of AIS patients with osteopenia and with normal bone status --- p.55 / Chapter 3.3 --- Univariate analysis --- p.56 / Chapter 3.3.1 --- Growth related factors --- p.56 / Chapter 3.3.2 --- "Skeletal related parameters (areal BMD, volumetric BMD and BMC)" --- p.56 / Chapter 3.3.2.1 --- DXA lumbar spine --- p.56 / Chapter 3.3.2.2 --- DXA proximal femur at the convex-side hip --- p.56 / Chapter 3.3.2.3 --- DXA proximal femur at the concave-side hip --- p.57 / Chapter 3.3.2.4 --- pQCT at non-dominant distal radius --- p.57 / Chapter 3.3.2.5 --- pQCT - vBMD at convex-side distal tibia --- p.57 / Chapter 3.3.2.6 --- pQCT - vBMD at concave-side distal tibia --- p.58 / Chapter 3.3.3 --- Curve related factors --- p.58 / Chapter 3.3.4 --- Anthropometrics parameters --- p.58 / Chapter 3.3.5 --- Family history --- p.58 / Chapter 3.3.6 --- Summary of univariate analysis --- p.59 / Chapter 3.4 --- Logistic regression model (single factor) --- p.59 / Chapter 3.5 --- Logistic regression model (multiple factors) --- p.60 / Chapter 3.5.1 --- BMD inclusive model --- p.60 / Chapter 3.5.2 --- BMC inclusive model --- p.61 / Chapter 3.5.3 --- Conventional model --- p.63 / Chapter 3.6 --- ROC curve --- p.63 / Chapter 3.6.1 --- BMD inclusive model --- p.64 / Chapter 3.6.2 --- Conventional model --- p.64 / Chapter 3.7 --- Predictive equation obtained from different logistic regression models --- p.64 / Chapter 3.7.1 --- BMD inclusive model --- p.65 / Chapter 3.7.2 --- Conventional model --- p.65 / Chapter IV. --- DISCUSSION --- p.105 / Chapter 4.1 --- Prognostic factors for curve progression --- p.105 / Chapter 4.1.1 --- Well-known prognostic factors --- p.105 / Chapter 4.1.1.1 --- Growth-related factors --- p.106 / Chapter 4.1.1.2 --- Initial curve magnitude --- p.107 / Chapter 4.1.2 --- A new predictor 一 Osteopenia --- p.107 / Chapter 4.2 --- Non-significant prognostic factors for curve progression --- p.109 / Chapter 4.2.1 --- Anthropometric parameters --- p.109 / Chapter 4.2.2 --- Family History --- p.110 / Chapter 4.2.3 --- Curve pattern --- p.110 / Chapter 4.3 --- Predictive model --- p.111 / Chapter 4.4 --- Comparison of predictive models between BMD inclusive model and conventional model derived from our population --- p.115 / Chapter 4.5 --- Possible relationship between osteopenia and etiopathogensis of AIS --- p.116 / Chapter 4.6 --- Axial measurement has a better predictive power in curve progression than peripheral measurement --- p.117 / Chapter 4.7 --- Discordance of BMD in bilateral hips --- p.118 / Chapter 4.8 --- Method justifications --- p.119 / Chapter 4.8.1 --- Definition of curve progression --- p.119 / Chapter 4.8.2 --- Incidence of progression as the outcome of prediction --- p.119 / Chapter 4.8.3 --- Selection on bone densitometers --- p.119 / Chapter 4.9 --- Clinical significance --- p.121 / Chapter 4.10 --- Limitations and Future Studies --- p.122 / Chapter 4.10.1 --- Limited follow-up time --- p.122 / Chapter 4.10.2 --- No defined cutoff value for 226}0´ببosteopenia 226}0ح or low BMC in paediatric area --- p.122 / Chapter 4.10.3 --- Predictive model could only applied in local population --- p.122 / Chapter 4.10.4 --- Intrinsic error in Risser grade measurement --- p.123 / Chapter 4.10.5 --- Further studies --- p.123 / Chapter 4.10.5.1 --- Validation of the newly developed predictive model --- p.123 / Chapter 4.10.5.2 --- Possible intervention of osteopenia --- p.124 / Chapter 4.10.5.3 --- Long term follow-up BMD measurements and fracture risk in AIS patients --- p.124 / Chapter 4.10.5.4 --- Discordance of bilateral hips BMD contributed by the shift of center of gravity --- p.125 / Chapter 4.10.5.5 --- Axial QCT can be an alternative method in assessing BMDin scoliotic patients --- p.125 / Chapter V. --- CONCLUSION --- p.126 / Chapter VI. --- APPENDIX --- p.127 / Chapter VII. --- BIBLIOGRAPHY --- p.128 / Chapter VIII. --- CONFERENCE PUBLICATIONS --- p.142

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_324629
Date January 2004
ContributorsHung, Wing Yin Vivian., Chinese University of Hong Kong Graduate School. Division of Orthopaedics and Traumatology.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xix, 142 leaves : ill. (some col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0026 seconds