The glymphatic system (GS) is primarily a neural waste clearance system that relies on cerebrospinal fluid (CSF) to transport neuronal byproducts and nutrients. Studies demonstrate that sleep facilitates movement within the GS to clear metabolites and maintain cerebral homeostasis. However, functions of the GS during sleep and its implications have predominantly been examined in animals, clinical/at-risk, and ageing populations. Our understanding of the neural mechanisms underlying GS during sleep in typically developing human infants is limited. The objective of this study was to investigate the relationship between GS imbalance (characterized by extra-axial CSF [EA-CSF] from MRI structural images) and sleep problems in early development. Data from 75 infants were obtained from the Baby Connectome Project. Sleep was indexed with the Brief Infant Sleep Questionnaire. Multilevel models were utilized to explore the associations of EA-CSF volumes and EA-CSF/total cerebral volume (TCV) ratios with age and sleep. We replicated previous findings on lower TCV and overall CSF volumes in infants with dysregulated sleep compared to infants with regulated sleep. Results also demonstrated a decline in EA-CSF/TCV ratios from 9 to 34 months of age (b = -0.0005, <i>t</i> = -2.19, <i>p</i> = .032). Sleep problems were not associated with differential developmental trajectories of EA-CSF volumes or EA-CSF/TCV ratios. Findings from the present study do not support sleep problems as a mechanism through which CSF disbursement within the GS is altered. Although elevated EA-CSF is associated with developmental and neurodegenerative pathology, in early typical development, its links with sleep dysregulation are not robust.
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/12559334 |
Date | 18 July 2022 |
Creators | Pearlynne Li Hui Chong (9023825) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/Sleep_and_the_Glymphatic_System_in_early_Development/12559334 |
Page generated in 0.0024 seconds