Return to search

Novel Functions of IL-27 in Innate Immunity: Characterization of IL-27-induced Inflammatory Responses in Human Monocytes and Impact of HIV Infection on IL-27 Expression and Function

Interleukins, cytokines secreted by leukocytes, are predominant messengers modulating immune responses. Interleukin-27 (IL-27), a key immunomodulatory cytokine, functions to induce both pro- and anti-inflammatory effects in various immune cells. IL-27 is a heterodimeric cytokine, composed of IL-27p28 and Epstein-Bar virus induced gene 3 (EBI3) subunits, and binds to a receptor composed of IL-27Rα (WSX-1) and gp130. Initial studies focused on describing IL-27 functions in skewing T helper cell development to a Th1 response, with few reports on functions in monocytes. Thus, in this thesis, I aimed to characterize novel functions of IL-27 in innate immune responses of monocytes. I initially established that IL-27 induced a pro-inflammatory cytokine profile (IL-6, IP-10, MIP-1α, MIP-1β, and TNF-α) mediated via STAT1/3 and NF-κB signaling pathways. Further investigation led to the discovery that IL-27 could enhance LPS responses via upregulation of TLR4 expression and NF-κB signaling. Together, these studies described novel signaling mechanisms (NF-κB and JAK/STAT crosstalk) and gene targets (cytokines and TLR4) of IL-27 that drive inflammatory responses. In continuing the quest for novel IL-27 functions in innate immunity, I reported IL-27 can upregulate expression of the IFN-responsive, antiviral protein called BST-2. My results showing IL-27-induced expression of BST-2 mRNA and cell surface protein were supported by previous studies reporting IL-27-induced expression of other antiviral molecules. Furthermore, previous studies showed IL-27 could inhibit HIV replication via antiviral gene induction, pointing to potential for IL-27 immunotherapies. In light of the posited role for IL-27 in therapeutics, it became inherently critical to describe how IL-27 functions in the setting of HIV infection. Thus, in my final thesis chapters, I described the effect of HIV infection on IL-27 expression and functions, addressing a substantial void in literature. Interestingly, a trend of decreased IL-27 expression and significant impairment of IL-27-induced gene expression was observed in HIV infection. Therefore, decreased circulating IL-27 and decreased IL-27 responsiveness may collectively dysregulate IL-27 function in HIV. This thesis describes novel, IL-27-driven, proinflammatory responses, and highlights impairment of IL-27 function in HIV infection. This work bridged a gap in knowledge of IL-27 functions in monocytes and highlighted multifaceted mechanisms underlying immunoregulation by IL-27. / Thesis (Ph.D, Microbiology & Immunology) -- Queen's University, 2012-04-12 13:07:50.588

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/7057
Date12 April 2012
CreatorsGuzzo, Christina
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0021 seconds