Ce travail de thèse a eu pour but d'étudier la thermodynamique de petits objets (nanoparticules ou édifices biomoléculaires) dans des milieux fortement hors-équilibre. Deux milieux miroirs ont été explorés, à savoir des gouttelettes micrométriques chargées et des microbulles générées sous irradiation laser intense. Ces deux systèmes sont par nature difficiles à sonder par des méthodes traditionnelles, c'est pourquoi, une thermographie innovante multi-échelle par méthodes optiques a été développée. Ainsi, une thermographie locale (au sein des nano-objets) et globale (dans le milieu environnant) a été réalisée. Cette thermographie utilise la fluorescence induite par laser - méthode simple, non invasive et efficace pour fournir une mesure de température avec une bonne résolution spatiale, temporelle et thermique - grâce à des colorants thermochromiques directement en solution dans le milieu ou bien incorporés dans les nano-objets. Cette thermographie est également complétée avec d'autres mesures physiques, notamment la taille des gouttelettes et des bulles micrométriques pour aller vers une étude thermodynamique exhaustive de ces systèmes. Ces études thermodynamiques ont été menées autour des deux thématiques : Edifices biomoléculaires dans des gouttelettes micrométriques chargées en cours de déshydratation. Les sources électrospray, devenues un outil incontournable en spectrométrie de masse, présentent une thermodynamique riche et encore mal comprise. Des mesures de taille et de température de gouttelettes micrométriques chargées en cours d'évaporation ont pu être confrontées dans le but d'avoir une description thermodynamique complète d'une source électrospray. De plus, afin de pouvoir suivre la conformation des édifices biomoléculaires (protéines) en cours de déshydratation, le concept d'anisotropie de fluorescence comme sonde conformationnelle a été validé en solution et pourra être transposé pour une analyse in situ dans la plume de l'électrospray.Nanoparticules dans des microbulles générées sous irradiation laser intense. Il s'agit ici d'étudier l'influence de nanoparticules lors de la génération de microbulles par nano-cavitation induite par irradiation laser intense, thématique au coeur du projet « ERTIGO ». Le principal objectif scientifique de ce projet a été d'obtenir une compréhension des mécanismes d'absorption d'une solution contenant des nanoparticules irradiées. A cet effet, une source lumineuse atypique (laser aléatoire) a été employée / The aim of this thesis was to study the thermodynamics of small objects (nanoparticles or biomolecule) in out-of-equilibrium media. Two mirror media were explored, namely charged micrometric droplets and microbubbles generated under intense laser irradiation. By nature, these two systems are difficult to probe by traditional methods, which is why an innovative multi-scale thermography by optical methods has been developed. Thus, a local (within the nano-objects) and a global (in the surrounding medium) thermography were carried out. Such thermography uses Laser-Induced Fluorescence - a simple, non-invasive and efficient method for providing temperature measurements with good spatial, temporal and thermal resolution - using thermochromic dyes directly in solution or incorporated into nano- objects. This thermography is also supplemented with other physical measurements, in particular the size of microdroplets and microbubbles, towards a complete thermodynamic study of these systems. These thermodynamic studies were carried out around the two following themes: Biomolecular structures in charged microdroplets during dehydration. Electrospray sources, which have become an essential tool in mass spectrometry, present a rich and still poorly understood thermodynamics. Measurements of the size and temperature of charged micrometric droplets during evaporation have been possible in order to obtain a complete thermodynamic description of an electrospray source. Moreover, in order to be able to follow the conformation of biomolecules (proteins) during dehydration, the concept of fluorescence anisotropy as a conformational probe has been validated in solution and can be transposed for an in situ analysis into the electrospray plume. Nanoparticles in microbubbles generated by intense laser irradiation. Here, we want to study the influence of nanoparticles during the generation of microbubbles by nano-cavitation induced by intense laser irradiation. This thematic is at the heart of the project "ERTIGO". The main scientific objective of this project was to obtain an understanding of the absorption mechanisms of a solution containing irradiated nanoparticles. For this purpose, an atypical light source (random laser) has been used in order to be able to illustrate this complex out-of-equilibrium system as a function of time by optical microscopy. In parallel, a local measurement of the temperature of the nanoparticles is envisaged
Identifer | oai:union.ndltd.org:theses.fr/2017LYSE1192 |
Date | 10 October 2017 |
Creators | Soleilhac, Antonin |
Contributors | Lyon, Antoine, Rodolphe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds