Cette thèse s'inscrit dans la théorie des matrices aléatoires, à l'intersection avec la théorie des probabilités libres et des algèbres d'opérateurs. Elle s'insère dans une démarche générale qui a fait ses preuves ces dernières décennies : importer les techniques et les concepts de la théorie des probabilités non commutatives pour l'étude du spectre de grandes matrices aléatoires. On s'intéresse ici à des généralisations du théorème de liberté asymptotique de Voiculescu. Dans les Chapitres 1 et 2, nous montrons des résultats de liberté asymptotique forte pour des matrices gaussiennes, unitaires aléatoires et déterministes. Dans les Chapitres 3 et 4, nous introduisons la notion de fausse liberté asymptotique pour des matrices déterministes et certaines matrices hermitiennes à entrées sous diagonales indépendantes, interpolant les modèles de matrices de Wigner et de Lévy.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00673551 |
Date | 05 December 2011 |
Creators | Male, Camille |
Publisher | Ecole normale supérieure de lyon - ENS LYON |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds