Spelling suggestions: "subject:"liberté asymptotic"" "subject:"libertés asymptotic""
1 |
États aléatoires, théorie quantique de l'information et probabilités libresNechita, Ion 24 March 2009 (has links) (PDF)
Cette thèse se trouve à l'intersection de la théorie des matrices aléatoires, des probabilités libres et de la théorie de l'information quantique. La plus grande partie des travaux présentés se concentrent sur les aspects probabilistes de l'information quantique et, en particulier, sur l'usage des matrices aléatoires dans différents modèles en théorie quantique. Une autre partie de cette thèse est dédiée à la théorie des probabilités libres et à ses liens avec les matrices aléatoires et l'information quantique. En théorie quantique de l'information, il existe différents modèles de matrices densités aléatoires. On s'intéresse, dans l'esprit de la théorie des matrices aléatoires, au comportement asymptotique des matrices densités, dans la limite où la taille du système converge vers l'infini. Le point de vue pris dans cette thèse est celui des systèmes quantiques ouverts, où l'espace qui nous intéresse est couplé avec l'environnement et le système composé se trouve dans un état pur uniforme. En prenant la trace partielle sur l'environnement, on obtient des matrices densités aléatoires que l'on étudie dans deux régimes asymptotiques. En exploitant des liens avec l'ensemble des matrices aléatoires dites de Wishart, on obtient les densités spectrales limites et les fluctuations des valeurs propres extrémales. En collaboration avec Clément Pellegrini, on étudie des interactions répétées entre un système quantique et une chaîne de systèmes auxiliaires. Nous avons introduit des éléments aléatoires dans ce modèle, soit en considérant que les états de la chaîne sont des variables indépendantes et identiquement distribuées, soit en choisissant, à chaque interaction, une matrice unitaire d'interaction aléatoire uniforme. On s'intéresse aux propriétés asymptotiques des matrices, après un grand nombre d'interactions. Au passage, on introduit un nouveau modèle de matrices densités aléatoires que l'on compare avec les modèles existants dans la littérature. Un problème qui occupe une place centrale dans cette thèse est la conjecture de Nielsen sur la catalyse en théorie quantique de l'information. En collaboration avec Guillaume Aubrun, nous avons progressé vers la preuve de cette conjecture et nous l'avons par la suite généralisée dans différentes directions. L'outil principal utilisé dans ces travaux nous vient de la théorie des probabilités : la théorie des grandes déviations nous permet de comparer stochastiquement des puissances de convolution des mesures de probabilités. Les techniques introduites et le lien avec la théorie des grandes déviations nous ont permis de voir ce problème sous un autre angle et de donner aux théoriciens de l'information quantique un outil de travail puissant. Enfin, toujours en lien avec les matrices aléatoires, cette thèse a donné lieu à deux travaux en probabilités libres. Les ensembles de matrices aléatoires sont des exemples importants et simples où l'on peut observer l'indépendance libre; il est donc naturel de se demander s'il est possible d'obtenir la notion de liberté avec des matrices déterministes. Une telle construction a été proposée par Philippe Biane, en utilisant des sommes de transpositions dans l'algèbre du groupe symétrique. Avec Florent Benaych-Georges, on a pu généraliser les résultats de P. Biane à des cycles quelconques. Notre approche est combinatoire ce qui nous a permis d'aboutir à des formules explicites pour les moments et les cumulants libres des variables à la limite. Grâce à cette même approche nous avons élaboré un modèle analogue en probabilités classiques en remplaçant le groupe symétrique par le groupe abélien des parties d'un ensemble fini, muni de l'opération de différence symétrique. En collaboration avec Stéphane Attal, nous avons construit une approximation de l'espace de Fock libre (qui joue un rôle central en théorie des probabilités non-commutatives) par un produit libre dénombrable d'espaces discrets. Cette idée généralise au cas libre une construction similaire pour l'espace de Fock symétrique, introduite et étudié par S. Attal. En même temps nous avons obtenu une approximation des opérateurs fondamentaux de création, d'annihilation et de jauge par des opérateurs construits à partir des matrices de taille 2. En utilisant ces constructions sont ensuite utilisées pour retrouver quelques approximations connues du mouvement brownien libre et du processus de Poisson libre. Tous ces résultats se généralisent au cas des espaces de Fock de multiplicité supérieure, qui permettent d'approcher des processus multidimensionnels. En conclusion, l'ensemble des travaux scientifiques présentés dans cette thèse se situe à l'intersection de trois grandes directions: les matrices aléatoires, les probabilités libres et la théorie quantique de l'information, l'accent étant mis sur les interactions et sur les liens entre ces domaines.
|
2 |
États aléatoires, théorie quantique de l'information et probabilités libres / Random states, quantum information theory and free probabilityNechita, Ion 24 March 2009 (has links)
Cette thèse se trouve à l'intersection de la théorie des matrices aléatoires, des probabilités libres et de la théorie de l'information quantique. La plus grande partie des travaux présentés se concentrent sur les aspects probabilistes de l'information quantique et, en particulier, sur l'usage des matrices aléatoires dans différents modèles en théorie quantique. Une autre partie de cette thèse est dédiée à la théorie des probabilités libres et à ses liens avec les matrices aléatoires et l'information quantique. En théorie quantique de l'information, il existe différents modèles de matrices densités aléatoires. On s'intéresse, dans l'esprit de la théorie des matrices aléatoires, au comportement asymptotique des matrices densités, dans la limite où la taille du système converge vers l'infini. Le point de vue pris dans cette thèse est celui des systèmes quantiques ouverts, où l'espace qui nous intéresse est couplé avec l'environnement et le système composé se trouve dans un état pur uniforme. En prenant la trace partielle sur l'environnement, on obtient des matrices densités aléatoires que l'on étudie dans deux régimes asymptotiques. En exploitant des liens avec l'ensemble des matrices aléatoires dites de Wishart, on obtient les densités spectrales limites et les fluctuations des valeurs propres extrémales. En collaboration avec Clément Pellegrini, on étudie des interactions répétées entre un système quantique et une chaîne de systèmes auxiliaires. Nous avons introduit des éléments aléatoires dans ce modèle, soit en considérant que les états de la chaîne sont des variables indépendantes et identiquement distribuées, soit en choisissant, à chaque interaction, une matrice unitaire d'interaction aléatoire uniforme. On s'intéresse aux propriétés asymptotiques des matrices, après un grand nombre d'interactions. Au passage, on introduit un nouveau modèle de matrices densités aléatoires que l'on compare avec les modèles existants dans la littérature. Un problème qui occupe une place centrale dans cette thèse est la conjecture de Nielsen sur la catalyse en théorie quantique de l'information. En collaboration avec Guillaume Aubrun, nous avons progressé vers la preuve de cette conjecture et nous l'avons par la suite généralisée dans différentes directions. L'outil principal utilisé dans ces travaux nous vient de la théorie des probabilités : la théorie des grandes déviations nous permet de comparer stochastiquement des puissances de convolution des mesures de probabilités. Les techniques introduites et le lien avec la théorie des grandes déviations nous ont permis de voir ce problème sous un autre angle et de donner aux théoriciens de l'information quantique un outil de travail puissant. Enfin, toujours en lien avec les matrices aléatoires, cette thèse a donné lieu à deux travaux en probabilités libres. Les ensembles de matrices aléatoires sont des exemples importants et simples où l'on peut observer l'indépendance libre; il est donc naturel de se demander s'il est possible d'obtenir la notion de liberté avec des matrices déterministes. Une telle construction a été proposée par Philippe Biane, en utilisant des sommes de transpositions dans l'algèbre du groupe symétrique. Avec Florent Benaych-Georges, on a pu généraliser les résultats de P. Biane à des cycles quelconques. Notre approche est combinatoire ce qui nous a permis d'aboutir à des formules explicites pour les moments et les cumulants libres des variables à la limite. Grâce à cette même approche nous avons élaboré un modèle analogue en probabilités classiques en remplaçant le groupe symétrique par le groupe abélien des parties d'un ensemble fini, muni de l'opération de différence symétrique. En collaboration avec Stéphane Attal, nous avons construit une approximation de l'espace de Fock libre (qui joue un rôle central en théorie des probabilités non-commutatives) par un produit libre dénombrable d'espaces discrets. Cette idée généralise au cas libre une construction similaire pour l'espace de Fock symétrique, introduite et étudié par S. Attal. En même temps nous avons obtenu une approximation des opérateurs fondamentaux de création, d'annihilation et de jauge par des opérateurs construits à partir des matrices de taille 2. En utilisant ces constructions sont ensuite utilisées pour retrouver quelques approximations connues du mouvement brownien libre et du processus de Poisson libre. Tous ces résultats se généralisent au cas des espaces de Fock de multiplicité supérieure, qui permettent d'approcher des processus multidimensionnels. En conclusion, l'ensemble des travaux scientifiques présentés dans cette thèse se situe à l'intersection de trois grandes directions: les matrices aléatoires, les probabilités libres et la théorie quantique de l'information, l'accent étant mis sur les interactions et sur les liens entre ces domaines. / This thesis is at the intersection of random matrix theory, free probability and quantum information theory. In quantum information theory, there exist several models for random density matrices. Much in the spirit of random matrix theory, we analyze the asymptotic behavior of density matrices when the size of the systems converge to infinity. We also propose a new model of random density matrices that we compare to the existing models. A central problem studied in this thesis is Nielsen's conjecture on quantum catalysis. We make important progress towards the solution of this conjecture by using a probabilistic tool, large deviation theory. We generalize some work of P. Biane on a permutations model for asymptotic freeness by replacing transpositions by cycles of arbitrary length. We also propose an analogue model in classical probability by replacing the symmetric group by the abelian group of subsets of a finite set endowed with the symmetric difference operation. Finally, we construct an approximation of the free Fock space by a countable free product of discrete spaces. We use this result to recover known approximations of the free Brownian motion and the free Poisson process
|
3 |
Forte et fausse libertés asymptotiques de grandes matrices aléatoiresMale, Camille 05 December 2011 (has links) (PDF)
Cette thèse s'inscrit dans la théorie des matrices aléatoires, à l'intersection avec la théorie des probabilités libres et des algèbres d'opérateurs. Elle s'insère dans une démarche générale qui a fait ses preuves ces dernières décennies : importer les techniques et les concepts de la théorie des probabilités non commutatives pour l'étude du spectre de grandes matrices aléatoires. On s'intéresse ici à des généralisations du théorème de liberté asymptotique de Voiculescu. Dans les Chapitres 1 et 2, nous montrons des résultats de liberté asymptotique forte pour des matrices gaussiennes, unitaires aléatoires et déterministes. Dans les Chapitres 3 et 4, nous introduisons la notion de fausse liberté asymptotique pour des matrices déterministes et certaines matrices hermitiennes à entrées sous diagonales indépendantes, interpolant les modèles de matrices de Wigner et de Lévy.
|
4 |
Champs d'holonomies et matrices aléatoires : symétries de tressage et de permutation / Holonomy fields and random matrices : invariance by braids and permutationsGabriel, Franck 30 June 2016 (has links)
Cette thèse porte sur plusieurs questions liées aux mesures de Yang-Mills planaires et aux champs markoviens d'holonomies planaires. Les problèmes sont de deux sortes : étude des champs markoviens d'holonomies planaires pour un groupe de structure donné et l'étude asymptotique des mesures de Yang-Mills lorsque la dimension du groupe tend vers l'infini. On définit la notion de champs markoviens d'holonomies planaires qui axiomatise la notion de mesures de Yang-Mills planaires. En utilisant une nouvelle symétrie en théorie des probabilités, l'invariance par tresse, on construit, caractérise et classifie les champs markoviens d'holonomies planaires. Nous montrons que tout champ markovien d'holonomies planaire est associé à un processus de Lévy qui satisfait une condition de symétrie et vice-versa. Ceci nous permet de caractériser, pour les surfaces sphériques, les champs markoviens d'holonomies tels que définis précédemment par Thierry Lévy. Lorsque le groupe de structure est le groupe symétrique, on peut construire le champ markovien d'holonomies planaire associé grâce à un modèle de revêtements aléatoires. On prouve la convergence des monodromies de ce revêtement aléatoire en s'appuyant sur l'étude, développée dans cette thèse, de l'asymptotique des matrices aléatoires invariantes par conjugaison par le groupe symétrique. / This thesis focuses on planar Yang-Mills measures and planar Markovian holonomy fields. We consider two different questions : the study of planar Markovian holonomy fields with fixed structure group and the asymptotic study of the planar Yang-Mills measures when the dimension of the structure group grows. We define the notion of planar Markovian holonomy fields which generalizes the concept of planar Yang-Mills measures. We construct, characterize and classify the planar Markovian holonomy fields by introducing a new symmetry : the invariance under the action of braids. We show that there is a bijection between planar Markovian holonomy fields and some equivalent classes of Lévy processes. We use these results in order to characterize Markovian holonomy fields on spherical surfaces. The Markovian holonomy fields with the symmetric group as structure group can be constructed using random ramified coverings. We prove that the monodromies of these models of random ramified coverings converge as the number of sheets of the covering goes to infinity. To prove this, we develop general tools in order to study the limits of families of random matrices invariant by the symmetric group. This allows us to generalize ideas, developped by Thierry Lévy in order to study the planar Yang-Mills measure with the unitary structure group, to the setting where the structure group is the symmetric group.
|
5 |
Forte et fausse libertés asymptotiques de grandes matrices aléatoires / Strong and false asymptotic freeness of large random matricesMale, Camille 05 December 2011 (has links)
Cette thèse s'inscrit dans la théorie des matrices aléatoires, à l'intersection avec la théorie des probabilités libres et des algèbres d'opérateurs. Elle s'insère dans une démarche générale qui a fait ses preuves ces dernières décennies : importer les techniques et les concepts de la théorie des probabilités non commutatives pour l'étude du spectre de grandes matrices aléatoires. On s'intéresse ici à des généralisations du théorème de liberté asymptotique de Voiculescu. Dans les Chapitres 1 et 2, nous montrons des résultats de liberté asymptotique forte pour des matrices gaussiennes, unitaires aléatoires et déterministes. Dans les Chapitres 3 et 4, nous introduisons la notion de fausse liberté asymptotique pour des matrices déterministes et certaines matrices hermitiennes à entrées sous diagonales indépendantes, interpolant les modèles de matrices de Wigner et de Lévy. / The thesis fits into the random matrix theory, in intersection with free probability and operator algebra. It is part of a general approach which is common since the last decades: using tools and concepts of non commutative probability in order to get general results about the spectrum of large random matrices. Where are interested here in generalization of Voiculescu's asymptotic freeness theorem. In Chapter 1 and 2, we show some results of strong asymptotic freeness for gaussian, random unitary and deterministic matrices. In Chapter 3 and 4, we introduce the notion of asymptotic false freeness for deterministic matrices and certain random matrices, Hermitian with independent sub-diagonal entries, interpolating Wigner and Lévy models.
|
Page generated in 0.0417 seconds