Return to search

Importância dos polimorfismos C3435T e C1236T do gene de resistência a múltiplas drogas (MDR1) na resposta ao tratamento com mesilato de imatinib em pacientes com Leucemia Mielóide Crônica (LMC) / Importance of polymophisms C3435T and C1236T in the multiple drug resistance gene (MDR1) in responde to treatment with imatinib meslate in patients with Chronic Myeloid Leukemia (CML)

Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-09-19T12:13:58Z
No. of bitstreams: 2
Dissertacao Lucas C G Pereira.pdf: 869540 bytes, checksum: 9c40d119515c83b8b52606c52be6703d (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-19T12:56:29Z (GMT) No. of bitstreams: 2
Dissertacao Lucas C G Pereira.pdf: 869540 bytes, checksum: 9c40d119515c83b8b52606c52be6703d (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-19T12:56:29Z (GMT). No. of bitstreams: 2
Dissertacao Lucas C G Pereira.pdf: 869540 bytes, checksum: 9c40d119515c83b8b52606c52be6703d (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2013-05-02 / In recent years, the evolution of health expenditures and specifically drugs, has
worried governments. Among the various specialties, oncology is among those
dealing with the greatest difficulties in the management of drug therapy. It is
known that patients treated with various drugs have variability of response and
susceptibility to drug toxicity. In present work, we study the role of Multiple Drug
Resistance gene (MDR1) polymorphisms C1236T and C3435T frequencies and
response to treatment with imatinib mesylate in 96 patients with chronic myeloid
leukemia (CML). A total of 96 patients with CML were treated according to the
Brazilian National Cancer Institute (INCA) guidelines and the blood samples
were collected for genotyping. Genomic DNA was extracted and C1236T and
C3435T polymorphisms genotyping was performed by the polymerase chain
reaction with restriction fragment length polymorphism (PCR-RFLP), which
detects a variation in length of a DNA fragment generated (370pb and 340pb)
by a specific endonuclease in a specific site of the genome (HaeIII and MboI).
Of the 96 CML samples, 31 samples were homozygous (CC), 13 homozygous
(TT) and 52 heterozygous (CT) for exon 12 (1236). For the exon 26 (3435), 35
were homozygous (CC), 12 homozygous (TT) and 49 heterozygotes (CT). All
frequencies for both polymorphisms were in Hardy-Weinberg equilibrium (p =
0.229 and q = 0.414). We found percentage association between
polymorphisms and their distribution in different populations, and the response
to treatment both cytogenetic and molecular difference was not statistically
significant (p <0.05) when compared to age and sex presented response by
patients and also no statistical difference (p <0,050). We conclude that the
observed allele frequency for exons 1236 were 59.4% for C and 40.6% for T
and the frequencies for the exon 3435 were 62.0% for C and 38.0% for T. That
the relationship between the frequencies of polymorphisms of MDR1 in
populations of different geographic locations, can provide tools that help in
choosing a more appropriate and effective treatment of CML. / Neste estudo, o papel dos polimorfismos C1236T e C3435T do gene de
Resistência a Múltiplas Drogas (MDR1) foram investigados em relação à
frequência e a resposta ao tratamento com imatinibe em pacientes com
leucemia mielóide crônica (LMC). Um total de 96 pacientes com LMC foram
tratados de acordo com as diretrizes do Instituto Nacional do Câncer (INCA) e
amostras de sangue foram coletadas para genotipagem do gene MDR
(Resistência à Multiplas Drogas). O DNA genômico foi extraído e a
genotipagem dos polimorfismos C1236T e C3435T foi realizada por meio da
reação em cadeia da polimerase com fragmentos de restrição (PCR-RFLP),
que detectou uma variação no comprimento de um fragmento de DNA gerado
(370pb e 340pb) por uma endonuclease específica em um sítio específico
do genoma (HaeIII e Mbol). Analisando as 96 amostras de pacientes para o
polimorfismo no éxon 12 (1236) com LMC, 31 amostras apresentaram
homozigose (CC), 13 homozigose (TT) e 52 heterozigose (CT). Para o estudo
do polimorfismo no éxon 26 (3435), 35 foram homozigotas (CC), 12
homozigotas (TT) e 49 heterozigotas (CT). Todas as frequências para ambos
os polimorfismos apresentaram-se em equilíbrio de Hardy-Weinberg (p = 0,229
e q = 0,414). Foi encontrada associação do percentual dos polimorfismos
estudados em relação à distribuição dos mesmos em grupos de diferentes
localizações geográficas, e sobre a resposta ao tratamento tanto citogenética e
molecular, não houve diferença estatísticamente significante (p<0,05), quando
foi comparado à idade e ao gênero apresentados pelos pacientes e a resposta
também não houve diferença estatística (p<0,05). Conclui-se que as
frequências alélicas observadas para o éxon 1236 foram de 59,4% para C e
40,6% para T e as frequências para o éxon 3435 foram de 62,0% para C e
38,0% para T e que a relação entre as frequências de polimorfismos de MDR1
nas populações de diferentes localizações geográficas, pode fornecer
ferramentas que auxiliem na escolha de um tratamento mais adequado e eficaz
da LMC.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tede/3100
Date02 May 2013
CreatorsPereira, Lucas Carlos Gomes
ContributorsLacerda, Elisangela de Paula Silveira, Vilanova-Costa, Cesar Augusto Sam Tiago
PublisherUniversidade Federal de Goiás, Programa de Pós-graduação em Ciências Farmacêuticas (FF), UFG, Brasil, Faculdade de Medicina - FM (RG)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
Relation824936988196152412, 600, 600, 600, 1545772475950486338, 6997636413449754996, BARBOZA, L.P. et al., (2000) Análise dos transcritos da translocação t(9:22) em Leucemia mieloide Cronica. Revista Brasileira de Hematologia e Hemoterapia, 22(2):89-98. BERGANTINI, A.P.F. et al., (2005) Leucemia Mieloíde Crônica e o sistema Faz-Fasl. Revista Brasileira de Hematologia e Hemoterapia, 27(2):120-125. BODOR, M.; KELLY, E.J.; HO, R.J. (2005). Characterization of the human MDR1 gene. AAPS Journal 7:E 1-5. BRADSHAW, D.M.; ARCECI, R.J. (1998). Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance. J Clin Oncol, 16, 3674-90. BRINKMANN, U. et al., (2001) Pharmacogenetics of the human drug-transporter gene MDR1: impact of polymorphisms on pharmacotherapy. DDT 6(16): 835-839. CHAUNCEY, T.R. et al., (2000). A phase I study of induction chemotherapy for older patients with newly diagnosed acute myeloid leukemia (AML) using mitoxantrone, etoposide, and the MDR modulator PSC 833: COBURGER, C.; LAGE, H.; MOLNÁR, J.; HILGEROTH, A. (2009). Impact of Novel MDR Modulators on Human Cancer Cells: Reversal Activities and Induction Studies. Pharmaceutical Research, 26:1. DROZDZIK, M, et al. (2003) Polymorphism in the P-glycoprotein drug transporter MDR1 gene: a possible link between environmental and genetic factors in Parkinson’s disease. Pharmacogenetics,13, 259–263. JOHNSTONE, R.W.; RUEFLI, A.A.; SMYTH, M.J. (2000). Multiple physiological functions for multidrug transporter P-glycoprotein?. Trends Biochem Sci, 25, 1-6. FIEGENBAUM, M. et al., (2005) The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastin treatment. Clinical Phamacology Therory, 78 (5): 551-558. FROMM, M.F. (2002) The influence of MDR1 polymorphisms on p-glycoprotein expression and function in humans. Advanced Drug Delivery Reviews 54: 1295- 1310. FUNG, L.K.; GOTTESMAN, M.M. (2009) A synonymous polymorphism in a common MDR1 (ABCB1) haplotype shapes protein function. Biochimica et Biophysica Acta. 1794:860-871. GADZICKI, D. et al., (2005) BCR-ABL gene amplification and overexpression in a patient with chronic myeloid leukemia treated with Imatinib. Cancer Genetic and Cytogenetics, 159: 164-197. GONZALES, et al., (2006) Implicações clínicas dos polimorfismos do gene de resistência a múltiplas drogas MDR1 (ABCB1)1, Revista Brasileira de Biociências, Porto Alegre, 4(3/4): 27-38, HARTMAN, A., VAN SCHAIKC, R.H.N., et al., (2010) Polymorphisms in genes involved in vincristine pharmacokinetics or pharmacodynamics are not related to impaired motor performance in children with leukemia. Leukemia Research, 34:154– 159. HIRATSUKA, M., SASAKI, T., MIZUGAKI, M. (2006) Genetic testing for pharmacogenetics and its clinical application in drug therapy. Clin Chim Acta. 363(1- 2):177-86. HOFFMEYER, S. et al., (2000) Functional polymorphisms of the human multi drug resistence gene: multiple sequence variations and correlation o fone allele with Pglycoprotein expression and activity in vivo. Proc Matl Acad SCi U S A, 97:3473- 3478. JAMROZIAK, K. (2004) Functional C3435T polymorphism of MDR1 gene: an impact on genetic susceptibility and clinical outcome of childhood acute lymphoblastic leukemia. Eur. J. Haematol., 72, 314-321. KIM, D.H. et al., (2001) Identification of functionally variant MDR1 alleles among European Americans and African americans. Clinical Pharmacology and Therapeutics, 70:189-199. KIM, D.H. et al., (2009) Clinical relevance of pharmacogenetics approach using multiple candidates genes to predict response and resistence to imatinib therapy in Chronic myeloid leukemia. Clinical Cancer Research. 15:4750-4758. LEITH, C.P. et al., (1999). Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: A southwest oncology group study. Blood, 94, 1086-99. LIN, J.H.; YAMAZAKI, M. (2003). Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin. Pharmacokinet. 42:59–98. MICKLEY, L.A. et al., (1998) Genetic polymorphism in MDR-1: a tool for examining allelic expression in normal cells, unselected and drug-select cell lines and human tumors.Blood 91, 1749-1756. MILADPOOR, B. et al., (2010) Association between MDR1 C3435T gene polymorphism and acute lymphoblastic leukemia (ALL) in Iranian population. Iranian Red Crescent Medical Journal, 12: 277-281. RODRIGUES, A.C. et al., (2005) High baseline serum total and LDL cholesterol levels are associated with MDR1 haplotypes in Brazilian hypercholesterolemic individuals of European descent. Braz. J. Med. Biol. Res., 38(9), 1389-1397, ROGERS, J.F., et al., (2002) Pharmacogenetics affects dosing, efficacy, and toxicity of cytochrome P450-metabolized drugs. Am J Med. 113(9): 746-50. SAMBROOK, J., RUSSELL, D.W. (2001) Molecular cloning : a laboratory manual 3rd ed. New York: Cold Spring Harbor Laboratory. SCHAEFFELER, E. et al., (2001) Frequency of C3435T polymorphism of MDR1 gene in African people. Lancet.; 358: 383-384. SCHAIN, M. et al (2009) A MDR1 (ABCB1) gene single nucleotide polymorphism predict outcome of temozolomide treatment in glioblastoma patients. Annals of Oncology 20: 175-181. SCHWAB, D. et al., (2003) Comparison of in vitro Pglycoprotein screening assay: recommendations for their use in drug discovery. J. Med. Chem., 46, 1716-25. SCHWAB, M. et al., (2003) Association between the C3435T MDR1 gene polymorphism and susceptibility for ulcerative colitis. Gastroenterology, 124(1), 26- 33 SIEGSMUND, M. (2002) Association of the P-glycoprotein transporter MDR1 (C3435T) polymorphism with the susceptibility to renal epithelial tumors. J. Am. Soc. Nephrol., 13, 1847-1854. TAKAHASHI, N. et al., (2010) correlation between imatinib pharmacokinetics and clinical response in Japanese with chronic-phase chronic myeloide leukemia. Clinical Pharmacological Therapy 88:809-813. WANG, D. et al., (2005) Multidrug resistence polypeptide 1 (MDR1, ABCB1) variant 3435>T affects mRNA stability. Pharmacogenetics and Genomics. 15: 693-704. WOOIN LEE, A. et al., (2005) Cancer Pharmacogenomics: Powerful Tools in Cancer Chemotherapy and Drug Development. Oncologist. 10(2): 104-11.

Page generated in 0.004 seconds