Made available in DSpace on 2016-06-02T20:28:27Z (GMT). No. of bitstreams: 1
4303.pdf: 3100020 bytes, checksum: 4cb674332ae9ab95428422b1d6236b72 (MD5)
Previous issue date: 2012-03-19 / Universidade Federal de Sao Carlos / Given closed connected surfaces X and Y, integers n > 0 and d > 2, and for i = 1,..., n partitions (dy)j=i,...,mi of d. The 5-tuple (X, Y, n, d, (dij)) is called the branch datum of a candidate branched covering. Many works discuss when a given branch datum can be realized by a branched covering / : X > Y of degree d, with n branching points and local degree in the pre-images of branching points given by dij. Hurwitz has established an algebraic equivalence to this geometric problem, this equivalence has been used to treat the subject. In this dissertation we define dessin d'enfant, a graph on the surface X, related to a branched covering and use this tool to obtain conditions for a given branch datum be exceptional (i.e. can not be realized). We also define an alternative and more explicit version for the definition of dessin d'enfant. / Considere duas superfícies fechadas, conexas, X e Y, inteiros n > 0 e d > 2, e para i = 1,... ,n uma partição (dy)j=i,...,mi de d. A 5-upla (X,Y,n,d, (dij)) é o dado de ramificação de um candidato a recobrimento ramificado. Em muitos trabalhos discute-se quando um dado de ramificação pode ser re¬alizado por um recobrimento ramificado / : X > Y de grau d, com n pontos de ramificação e graus locais na pré-imagem dos pontos de ramificação dados por d^. Hurwitz estabeleceu uma equivalência algébrica para este problema geomé¬trico, esta equivalência tem sido utilizada para tratar do tema. Neste trabalho apresentamos a definição de dessin d'enfant, um grafo na superfície X, relacionado com um recobrimento ramificado e utilizamos esta ferramenta para obter condições que estabelecem quando um dado de ramificação é excepcional (não pode ser re¬alizado). Abordamos também uma versão alternativa para a definição de dessin d'enfant, mais completa.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/5882 |
Date | 19 March 2012 |
Creators | Panzarin, Karen Regina |
Contributors | Vendrúscolo, Daniel |
Publisher | Universidade Federal de São Carlos, Programa de Pós-graduação em Matemática, UFSCar, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds