L'industrie de la microélectronique s'appuie sur l'évolution constante de la miniaturisation des transistors. D'ici 2016, cette industrie atteindra le nœud technologique 16 nm dans lequel il faudra être capable de graver des structures de dimensions nanométrique ayant de très forts facteurs d'aspect. Cependant, les procédés de gravure actuels montrent de sérieuses limitations en termes de contrôle des profils et des dimensions critiques lorsqu'il faut graver de telles structures. Les problèmes rencontrés sont liés d'une part à des limitations intrinsèques des procédés plasmas et d'autre part à l'apparition de nouveaux phénomènes lorsque la dimension des structures à graver devient nanométrique. Dans le cadre de cette thèse, un nouveau mode de fonctionnement des sources à plasma est étudié pour développer des procédés de gravure adaptés aux prochaines générations de circuits intégrés : les plasmas modulés en impulsions courtes. Les premiers travaux réalisés s'appuient sur de puissantes techniques d'analyses du plasma (spectroscopie d'absorption VUV, sonde de flux ionique, analyseur électrostatique) dans le but de mettre en évidence l'impact des paramètres de la modulation en impulsion du plasma sur ses caractéristiques physicochimiques (flux et énergie des radicaux et des ions). Ces diagnostics ont tout d'abord permis de définir très clairement les conséquences de la modulation en impulsion du plasma sur les flux de radicaux réactifs qui bombardent le substrat : le rapport de cycle est LE paramètre clé pour contrôler la chimie du plasma car il permet de contrôler le taux de fragmentation du gaz par impact électronique. Dans un second temps, nous avons également démontré que dans les plasmas électronégatifs et pour une puissance RF de polarisation donnée, l'énergie des ions augmente lorsque le rapport de cycle diminue. Fort de ces connaissances fondamentales sur les plasmas, des analyses des surfaces (XPS, MEB, Raman…) ont permis de comprendre les mécanismes mis en jeux lors de l'interaction plasma- surface. Ainsi, il a été possible de développer des procédés de gravure pulsés pour plusieurs étapes de la grille de transistor (prétraitement HBr, gravure du Si-ARC, gravure du pSi). Les prétraitements HBr sont incontournables pour réduire la rugosité de bord de ligne de transistor. Lors de cette étape, une couche riche en carbone limite l'effet bénéfique des UV du plasma sur la diminution de la rugosité. Grâce à l'utilisation des plasmas pulsés, l'origine de cette couche a été mise en évidence : elle résulte du dépôt sur les motifs d'espèces carbonées non volatiles issues de la photolyse de la résine qui sont relâchées dans le plasma. Dans ce système bicouche, les contraintes de la couche carbonée dure vont se relaxer dans le volume mou de la résine par phénomène de « buckling » qui se traduit par une hausse de la rugosité de bord de ligne. Nous avons montré que cela peut être évité en minimisant l'épaisseur de cette couche, ce qui peut être obtenu notamment en pulsant le plasma. La gravure de la couche anti-réflective Si-ARC qui sert de masque dur et celle de la grille en poly Silicium reposent sur l'utilisation de plasmas fluorocarbonés. Mais dans ce type de plasma, la production de précurseurs pour la polymérisation est diminuée quand le plasma est pulsé, conduisant à une perte de sélectivité et d'anisotropie. Les plasmas synchronisés pulsés ne sont donc pas de bons candidats pour les étapes de gravure considérées. Pour pallier à ce problème, un autre mode de polarisation a été étudié : les plasmas pour lesquels seule la puissance de polarisation est pulsée. Dans le cas de la gravure du Si-ARC, il est possible d'obtenir des profils très anisotropes avec une sélectivité vis-à-vis de la résine nettement améliorée. Pour la gravure du Silicium, les effets d'ARDE ont pu être diminués tout en améliorant la sélectivité. Ces résultats sont très encourageants. / Microelectronics industry is based on the continuous transistor downscaling. By the year 2016, the 16nm technological node would be achieved, so that structures with nanometric dimensions and high aspect ratio would have to be etch. However, traditional etching processes shows major limitations in terms of pattern profiles control and critical dimensions when such structures have to be etch. The encountered problems are related directly to intrinsic limitations of plasmas processes but also to the emergence of new phenomena’s when the dimensions of structures to etch become nanometric. In the framework of this thesis, a new strategy to produce plasma has been evaluated to develop etching plasmas processes adapted to next integration circuit generations: the pulsed plasmas. Over a first phase, the impact of plasma pulsing parameters (frequency and duty cycle) on the plasma physico-chemical characteristics has been highlight. This has been achievable thanks to advanced plasma analyse techniques (VUV broad band absorption spectroscopy, ion flux probe, retarding electrical field analyser…) developed to allow time resolved measurements. For the neutral flux, diagnostics have revealed that duty cycle is THE key control knob to tune the plasma. Indeed, a low duty cycle leads to reduced parent gas fragmentation and thus a reduced chemical reactivity. On the other hand, in electronegative plasmas and for constant RF power, we have demonstrated that ion energy is considerably increased when the ions flux is decreased (i.e. when the duty cycle is decreased). Then, surface analyses (XPS, SEM, Raman spectroscopy…) brought out the mechanisms involved during the plasma-surface interaction. Deeper comprehension of impact of pulsing parameters enables to develop pulsed plasmas processes more easily. These works are focused on the top of the transistor gate and deal with the following steps: HBr cure, Si-ARC etching, poly-silicon etching. HBr cure is an essential pre-treatment of the 193 nm photoresist to decrease the Line Width Roughness (LWR) of transistor gate. During this step, a carbon rich layer is formed on the surface of the resist pattern and degrades the beneficial action of UV plasma light on LWR reduction. Thanks to use of pulsed plasmas, the origin of this carbon rich layer has been highlight: UV induced modifications in polymer bulk lead to outgassing of volatiles carbon-based products in the plasma. These carbon containing moieties are fragmented by electron impact dissociation reaction in the plasma, which create sticking carbon based precursors available for re-deposition on the resist patterns. The impact of this layer on the LWR and resist pattern reflow is studied, and a possible mechanical origin (i.e. buckling instabilities) is highlighted. Finally, we showed that the use of pulsed HBr curing plasma allows to reduce and control the thickness of the graphite-like layer and to obtain LWR reduction that are comparable to VUV treatment only. The Si-ARC layer, used as hard mask, and the poly-silicon gate etching are based on the use of fluorocarbon plasmas. However, in these plasmas, the production of radicals enable for the polymerisation is decreased when the duty cycle is reduced. It leads to loss of both anisotropy and selectivity. Synchronised pulsed plasmas are then not adapted to such etching processes. To overcome this problem, a new way to produce plasma has been studied: the ICP source power is maintained constant and only the bias power is pulsed. Regarding Si-ARC etching, very anisotropic profiles are obtained and the Si-ARC to resist selectivity is enhanced while pulsing the rf bias to the wafer. In the case of poly-silicon etching, the ARDE effects are significantly reduced while the selectivity regarding the oxide is improved. These results are very promising for the development of polymerising plasmas processes.
Identifer | oai:union.ndltd.org:theses.fr/2013GRENT073 |
Date | 24 October 2013 |
Creators | Brihoum, Mélissa |
Contributors | Grenoble, Cunge, Gilles |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0033 seconds