Return to search

Séparation par voie enzymatique d'énantiomères de profènes : optimisation du biocatalyseur et mise en oeuvre en dioxyde de carbone supercritique

La séparation de deux énantiomères est un procédé d’intérêt pour l’industrie pharmaceutique. En effet, souvent un seul des énantiomères exerce l'activité biologique requise. Cette problématique est abordée ici par l'utilisation d'enzymes énantiosélectives qui est une alternative intéressante aux méthodes conventionnelles (chromatographie chirale, synthèse asymétrique ou cristallisation). Cette approche a été mise en oeuvre pour les molécules de la famille des profènes (l’Ibuprofène, le Kétoprofène ou le Naproxène par exemple) qui sont des acides 2- arylpropioniques et constituent une classe importante de médicaments anti-inflammatoires non stéroïdiens. Tout d’abord, un travail de recherche dans le domaine de la catalyse enzymatique et de l’ingénierie d’enzymes a été effectué. Des enzymes aux potentialités prometteuses, issues de la levure Yarrowia lipolytica, pour la résolution de ces trois anti-inflammatoires ont été identifiées. S’appuyant sur la modélisation moléculaire, l’ingénierie moléculaire a été utilisée pour accéder à des enzymes performantes tant du point de vue de la sélectivité que de l’activité. Les réactions ont été réalisées conventionnellement dans un système diphasique phase aqueuse/décane car les profènes et les esters associés sont des substrats hydrophobes et très faiblement solubles dans l'eau, la réaction doit donc être effectuée dans un solvant apolaire en contact avec une phase aqueuse où l'enzyme libre est dissoute. Ce mode opératoire permet d'éviter une immobilisation de l'enzyme. Une enzyme pour chaque substrat avec une énantiosélectivité suffisante a pu être développée, à savoir Lip2p V232A pour l’ibuprofène, V235S pour le naproxène et V232F pour le kétoprofène. Les lipases de Candida rugosa se sont également avérées intéressantes pour la résolution des profènes mais moins que les lipases précédemment évoquées. Le deuxième aspect de cette thèse s’est intéressé à la mise oeuvre de cette technique de résolution enzymatique dans un procédé innovant de Chimie Verte où le dioxyde de carbone supercritique (CO2SC) remplace le décane. En effet, les solvants organiques tels que le décane peuvent être toxiques mais aussi difficiles à éliminer, à la fin du processus, ce qui conduit à des étapes fastidieuses et coûteuses de purification. Dans un premier temps l’étude a porté sur la résolution de l’acide 2-bromo phényl acétique par l’hydrolyse de son ester octylique (ester + eau <=> acide (profène) + alcool). L'acidification de la phase aqueuse en contact avec CO2SC (formation d'acide carbonique) s’est montrée préjudiciable pour obtenir des conversions élevées. Cet inconvénient a été atténué en utilisant des concentrations assez élevées de sels (Na2HPO4 et KH2PO4) pour tamponner la phase aqueuse. Une étude spécifique en cellule haute pression utilisant des sondes solvatochromiques a permis d’établir que l’utilisation de concentrations élevées de sels (de l’ordre de 1000 mmol/L) permettait de maintenir un pH de l‘ordre de 6. Dans ces conditions, des conversions élevées ont pu être obtenues pour des temps de réactions de l’ordre de 100 h. Cependant la cinétique s’est avérée plus lente par rapport à celle observée avec le décane. L’explication de cette différence n’est pas encore totalement élucidée mais deux pistes ont été privilégiées : la formation de carbamates dues aux interactions entre le CO2SC et les acides aminés composant l’enzyme ou une mauvaise ouverture du volet moléculaire qui recouvre le site actif de l’enzyme liée à la moindre hydrophobicité du CO2SC hydraté. Cette résolution énantiomérique a également été mise en oeuvre dans un système sans phase aqueuse en utilisant l‘enzyme sous sa forme immobilisée sur support solide en utilisant la réaction réverse, l’estérification. Utilisant les mêmes approches, la résolution énantiomérique de l’ibuprofène a également été réalisée. Les meilleurs résultats obtenus en système diphasique phase aqueuse/CO2SC permettent en 75 heures une résolution quasi-totale.

Identiferoai:union.ndltd.org:univ-toulouse.fr/oai:oatao.univ-toulouse.fr:17770
Date23 November 2016
CreatorsGérard, Doriane
ContributorsInstitut National Polytechnique de Toulouse - INPT (FRANCE), Laboratoire de Génie Chimique - LGC (Toulouse, France)
Source SetsUniversité de Toulouse
LanguageFrench
Detected LanguageFrench
TypePhD Thesis, PeerReviewed, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
Relationhttp://oatao.univ-toulouse.fr/17770/

Page generated in 0.0018 seconds