Le but de cette thèse est de généraliser un certain nombre de résultats arithmétiques connus pour les formes modulaires elliptiques au cas des formes modulaires de Hilbert. Parmi ces résultats citons le contrôle de l'image de la représentation galoisienne résiduelle [Serre, Ribet], le critère de congruence de Hida, ainsi que la liberté de la cohomologie entière de la variété modulaire de Hilbert sur certaines composantes locales de l'algèbre de Hecke et la propriété de Gorenstein de celles-ci [Mazur, Faltings-Jordan]. Dans le cas de niveau "minimal" ceci permet de relier la $p$-partie "algébrique" de la valeur en 1 de la fonction L adjointe d'une forme modulaire de Hilbert nouvelle au cardinal du groupe de Selmer correspondant. L'approche des propriétés arithmétiques des formes modulaires de Hilbert se fait à travers leurs représentations galoisiennes modulo $p$ et l'outil principal est l'action de l'inertie en $p$. Cette action est contrôlée par le calcul des poids de Hodge-Tate (resp. de Fontaine-Laffaille) de la cohomologie $p$-adique (resp. modulo $p$) de la variété modulaire de Hilbert. La partie cohomologique de ce travail repose sur la construction des compactifications toroïdales arithmétiques de la variété abélienne de Hilbert-Blumenthal universelle (et de ses produits fibrés), au-dessus des compactifications toroïdales arithmétiques de la variété modulaire de Hilbert en niveau $\Gamma_1(c,n)$.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00005179 |
Date | 09 October 2003 |
Creators | DIMITROV, Mladen |
Publisher | Université Paris-Nord - Paris XIII |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds