L'objectif de ce travail est l'étude des équations différentielles complètes du second ordre de type elliptique à coefficients opérateurs dans un espace de Banach X quelconque. Une application concrète de ces équations est détaillée, il s'agit d'un problème de transmission du potentiel électrique dans une cellule biologique où la membrane constitue une couche mince. L'originalité de ce travail réside particulièrement dans le fait que les opérateurs non bornés considérés ne commutent pas nécessairement. Une nouvelle hypothèse dite de non commutativité est alors introduite. L'analyse est faite dans deux cadres fonctionnels distincts: les espaces de Hölder et les espaces Lp (avec X un espace UMD). L'équation est d'abord étudiée sur la droite réelle puis sur un intervalle borné avec conditions aux limites de Dirichlet. On donne des résultats d'existence, d'unicité et de régularité maximale de la solution classique sous des conditions sur les données dans des espaces d'interpolation. Les techniques utilisées sont basées sur la théorie des semi-groupes, le calcul fonctionnel de Dunford et la théorie de l'interpolation. Ces résultats sont tous appliqués à des équations aux dérivées partielles concrètes de type elliptique ou quasi-elliptique.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00712008 |
Date | 22 June 2012 |
Creators | Meisner, Maëlis |
Publisher | Université du Havre |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds