Spelling suggestions: "subject:"régularité maximal""
1 |
Méthodes de résolution d'équations algébriques et d'évolution en dimension finie et infinie / Some methods of solving of algebraic and evolution equations in finite and infinite dimensionalBoussandel, Sahbi 10 December 2010 (has links)
Dans la présente thèse, on s’intéresse à la résolution de problèmes algébriques et d’évolution en dimension finie et infinie. Dans le premier chapitre, on a étudié l’existence globale et la régularité maximale d’un système gradient abstrait avec des applications à des problèmes de diffusion non-linéaires et à une équation de la chaleur avec des coefficients non-locaux. La méthode utilisée est la méthode d’approximation de Galerkin. Dans le deuxième chapitre, on a étudié l’existence locale, l’unicité et la régularité maximale des solutions de l’équation de raccourcissement des courbes en utilisant le théorème d’inversion locale. Finalement, dans le dernier chapitre, on a résolu une équation algébrique entre deux espaces de Banach en utilisant la méthode de Newton continue avec une application à une équation différentielle avec des conditions aux limites périodiques / In this work, we solve algebraic and evolution equations in finite and infinite-dimensional sapces. In the first chapter, we use the Galerkin method to study existence and maximal regularity of solutions of a gradient abstract system with applications to non-linear diffusion equations and to non-degenerate quasilinear parabolic equations with nonlocal coefficients. In the second chapter, we Study local existence, uniqueness and maximal regularity of solutions of the curve shortening flow equation by using the local inverse theorem. Finally, in the third chapter, we solve an algebraic equation between two Banach spaces by using the continuous Newton’s method and we apply this result to solve a non-linear ordinary differential equation with periodic boundary conditions.
|
2 |
Étude unifiée d'équations aux dérivées partielles de type elliptique régies par des équations différentielles à coefficients opérateurs dans un cadre non commutatif : applications concrètes dans les espaces de Hölder et les espaces Lp / Unified study of partial differential equations of elliptic type governed by differential equations with operator coefficients in a noncommutative framework : concrete applications in Hölder and Lp spacesMeisner, Maëlis 22 June 2012 (has links)
L'objectif de ce travail est l'étude des équations différentielles complètes du second ordre de type elliptique à coefficients opérateurs dans un espace de Banach X quelconque. Une application concrète de ces équations est détaillée, il s'agit d'un problème de transmission du potentiel électrique dans une cellule biologique où la membrane constitue une couche mince. L'originalité de ce travail réside particulièrement dans le fait que les opérateurs non bornés considérés ne commutent pas nécessairement. Une nouvelle hypothèse dite de non commutativité est alors introduite. L'analyse est faite dans deux cadres fonctionnels distincts: les espaces de Hölder et les espaces Lp (avec X un espace UMD). L'équation est d'abord étudiée sur la droite réelle puis sur un intervalle borné avec conditions aux limites de Dirichlet. On donne des résultats d'existence, d'unicité et de régularité maximale de la solution classique sous des conditions sur les données dans des espaces d'interpolation. Les techniques utilisées sont basées sur la théorie des semi-groupes, le calcul fonctionnel de Dunford et la théorie de l'interpolation. Ces résultats sont tous appliqués à des équations aux dérivées partielles concrètes de type elliptique ou quasi-elliptique. / The aim of this work is the study of complete elliptic differential equations of second order with operator coefficients in a Banach space X. A concrete application of these equations is detailed, it concerns a transmission problem of electric potential in a biological cell where the membrane is considered as a thin layer. The originality of this work is the fact that unbounded operators which are considered do not commute necessarily. A new noncommutativity hypothesis is then introduced. The analysis is performed in two distinct functional frameworks: the Hölder spaces and the Lp spaces (X being a UMD space). First, the equation is studied on the whole real line and secondly in a bounded interval with Dirichlet boundary conditions. Existence, uniqueness and maximal regularity of the classical solution are proved under some conditions on the data in interpolation spaces. The techniques used are based on semigroup theory, Dunford functional calculus and interpolation theory. All the results are applied to concrete partial differential equations of elliptic or quasi-elliptic type.
|
3 |
Régularité maximale Lp du problème de Cauchy non-autonome et Théorie spectrale des opérateurs de Schrödinger sur les variétés RiemanniennesPoupaud, César 14 December 2005 (has links) (PDF)
Cette thèse se compose de deux parties principales. La première a pour objet la régularité maximale des équations d'évolution. Plus précisemment, étant donnée une famille d'opérateurs dépendant du temps, on s'intéresse à l'existence et l'unicité d'une solution au problème de Cauchy non-autonome associé. Sous l'hypothèse de continuité relative, on montre que la régularité maximale de la famille se ramène à la régularité de chaque opérateur. Nous obtenons des résultats de même nature pour le problème du second ordre. Dans la deuxième partie, deux problèmes de théorie spectrale des opérateurs de Schrödinger sur les variétés sont abordés. Tout d'abord, on obtient une minoration du bas du spectre essentiel au moyen de quantités liées au potentiel. Ce résultat permet notamment d'obtenir des critères de compacité de la résolvante. Le dernier chapitre traîte d'estimation du type Cwikel-Lieb-Rozenblum du nombre de valeurs propres qui apparaissent sous le spectre essentiel. La majoration obtenue fait directement intervenir le noyau de la chaleur du Laplacien sur la variété.
|
4 |
Maximal regularity for non-autonomous evolution equations / Régularité maximale des équations d’évolution non-autonomesAchache, Mahdi 05 March 2018 (has links)
Cette thèse est dédiée a l''etude de certaines propriétés des équations d' évolutions non-autonomes $u'(t)+A(t)u(t)=f(t), u(0)=x.$ Il s'agit précisément de la propriété de la régularité maximale $L^p$: étant donnée $fin L^{p}(0,tau;H)$, montrer l'existence et unicité de la solution $u in W^{1,p}(0,tau;H)$. Ce problème a 'et'e intensivement étudie dans le cas autonome, i.e., $A(t)=A$ pour tout $t$. Dans le cas non-autonome, le problème a été considéré par J.L.Lions en 1960. Nous montrons divers résultats qui étendent tout ce qui est connu sur ce problème. On suppose ici que la famille des opérateurs $(mathcal{A}(t))_{tin [0,tau]}$ est associée à des formes quasi-coercives, non autonomes $(fra(t))_{t in [0,tau]}.$ Nous considérons également le problème de régularité maximale pour les d'ordre 2 (équations des ondes). Plusieurs exemples et applications sont considérés. / This Thesis is devoted to certain properties of non-autonomous evolution equations $u'(t)+A(t)u(t)=f(t), u(0)=x.$ More precisely, we are interested in the maximal $L^p$-regularity: given $fin L^{p}(0,tau;H),$ prove existence and uniqueness of the solution $u in W^{1,p}(0,tau;H)$. This problem was intensively studied in the autonomous cas, i.e., $A(t)=A$ for all $t.$ In the non-autonomous cas, the problem was considered by J.L.Lions in 1960. We prove serval results which extend all previously known ones on this problem. Here we assume that the familly of the operators $(mathcal{A}(t))_{tin [0,tau]}$ is associated with quasi-coercive, non-autonomous forms $(fra(t))_{t in [0,tau]}.$ We also consider the problem of maximal regularity for second order equations (the wave equation). Serval examples and applications are given in this Thesis.
|
5 |
Étude unifiée d'équations aux dérivées partielles de type elliptique régies par des équations différentielles à coefficients opérateurs dans un cadre non commutatif: applications concrètes dans les espaces de Hölder et les espaces LpMeisner, Maëlis 22 June 2012 (has links) (PDF)
L'objectif de ce travail est l'étude des équations différentielles complètes du second ordre de type elliptique à coefficients opérateurs dans un espace de Banach X quelconque. Une application concrète de ces équations est détaillée, il s'agit d'un problème de transmission du potentiel électrique dans une cellule biologique où la membrane constitue une couche mince. L'originalité de ce travail réside particulièrement dans le fait que les opérateurs non bornés considérés ne commutent pas nécessairement. Une nouvelle hypothèse dite de non commutativité est alors introduite. L'analyse est faite dans deux cadres fonctionnels distincts: les espaces de Hölder et les espaces Lp (avec X un espace UMD). L'équation est d'abord étudiée sur la droite réelle puis sur un intervalle borné avec conditions aux limites de Dirichlet. On donne des résultats d'existence, d'unicité et de régularité maximale de la solution classique sous des conditions sur les données dans des espaces d'interpolation. Les techniques utilisées sont basées sur la théorie des semi-groupes, le calcul fonctionnel de Dunford et la théorie de l'interpolation. Ces résultats sont tous appliqués à des équations aux dérivées partielles concrètes de type elliptique ou quasi-elliptique.
|
6 |
Théorie des opérateurs sur les espaces de tentes / Operator theory on tent spacesHuang, Yi 12 November 2015 (has links)
Nous donnons un mécanisme de type Calderón-Zygmund concernant la théorie de l’extrapolationpour des opérateurs d’intégrale singulière sur les espaces de tentes. Pour des opérateursde régularité maximale sur les espaces de tentes, nous donnons des résultats optimaux enexploitant la structure des opérateurs intégraux de convolution et en utilisant des estimationsde la décroissance hors-diagonale du semi-groupe ou de la famille résolvante sous-jacente.Nous appliquons des techniques précédentes d’analyse harmonique et fonctionnelle pourestimer sur les espaces de tentes certains opérateurs d’intégrale évolutionnelle, nées de l’étudedes problèmes aux limites elliptiques et des systèmes non-autonomes du premier ordre. / We give a Calderón-Zygmund type machinery concerning the extrapolation theory for thesingular integral operators on tent spaces. For maximal regularity operators on tent space, wegive some optimal results by exploiting the structure of convolution integral operators and byusing the off-diagonal decay estimates of the underlying semigroup or resolvent family.We apply the previous harmonic and functional analysis techniques to estimate on tentspaces certain evolutionary integral operators arisen from the study of boundary value ellipticproblems and first order non-autonomous systems.
|
7 |
Équation de diffusion généralisée pour un modèle de croissance et de dispersion d'une population incluant des comportements individuels à la frontière des divers habitats / Generalized diffusion equation for a growth and dispersion model of a population including individual behaviors on the boundary of the different habitatsThorel, Alexandre 24 May 2018 (has links)
Le but de ce travail est l'étude d'un problème de transmission en dynamique de population entre deux habitats juxtaposés. Dans chacun des habitats, on considère une équation aux dérivées partielles, modélisant la dispersion généralisée, formée par une combinaison linéaire du laplacien et du bilaplacien. On commence d'abord par étudier et résoudre la même équation avec diverses conditions aux limites posée dans un seul habitat. Cette étude est effectuée grâce à une formulation opérationnelle du problème: on réécrit cette EDP sous forme d'équation différentielle, posée dans un espace de Banach construit sur les espaces Lp avec 1 < p < +∞, où les coefficients sont des opérateurs linéaires non bornés. Grâce au calcul fonctionnel, à la théorie des semi-groupes analytiques et à la théorie de l'interpolation, on obtient des résultats optimaux d'existence, d'unicité et de régularité maximale de la solution classique si et seulement si les données sont dans certains espaces d'interpolation. / The aim of this work is the study of a transmission problem in population dynamics between two juxtaposed habitats. In each habitat, we consider a partial differential equation, modeling the generalized dispersion, made up of a linear combination of Laplacian and Bilaplacian operators. We begin by studying and solving the same equation with various boundary conditions in a single habitat. This study is carried out using an operational formulation of the problem: we rewrite this PDE as a differential equation, set in a Banach space built on the spaces Lp with 1 < p < +∞, where the coefficients are unbounded linear operators. Thanks to functional calculus, analytic semigroup theory and interpolation theory, we obtain optimal results of existence, uniqueness and maximum regularity of the classical solution if and only if the data are in some interpolation spaces.
|
Page generated in 0.064 seconds