Return to search

Comportement asymptotique de modèles en séparation de phases / Asymptotic behaviour of some phase separation models

Dans cette thèse, on étudie l'existence, l'unicité et la régularité des solutionsd'équation de type Cahn-Hilliard ainsi que son comportement asymptotiqueen termes d'existence de l'attracteur global et d'un attracteur exponentiel. Cetteéquation est considérée dans un domaine borné et régulier pour différents types denonlinéarités et de conditions au bord.D'abord, on étudie l'équation avec des conditions de type Dirichlet sur le bord etune nonlinéarité régulière. Après, on considère une perturbation du problème et ondémontre l'existence d'une famille robuste d'attracteurs exponentiels lorsque ε tendvers 0.Ensuite, on étudie l'équation avec des conditions dynamiques sur le bord. On considèretout d'abord une nonlinéarité régulière et on donne une étude théorique etnumérique. Après, on illustre ces résultats par des simulations numériques en dimensiondeux d'espace qui permettent d'étudier l'influence des différents paramètres.On termine par une étude du modèle considéré avec une nonlinéarité singulière quel'on approche par des fonctions régulières et on introduit une notion de solutionappropriée. / This thesis is devoted to the study of the existence, uniqueness andregularity of solutions for a Cahn-Hilliard type equation, as well as the asymptoticbehavior in terms of existence of the global attractor and of an exponential attractor.This equation is considered in a bounded and smooth domain under variousassumptions on the nonlinear terms and with different boundary conditions.We start by studying the equation with Dirichlet boundary conditions and a regularnonlinearity. Then, we consider a perturbation of the problem and we prove theexistence of a robust family of exponential attractors as ε tends to 0.For the equation endowed with dynamic boundary conditions, we first consider aregular nonlinearity and we treat the theoretical and numerical analysis. Then, weillustrate the results by numerical simulations in two space dimension which allow usto study the influence of different parameters. Finally, we treat the problem consideredwith a singular nonlinearity which is approximated by regular functions andwe give a suitable notion of solutions.

Identiferoai:union.ndltd.org:theses.fr/2013POIT2308
Date05 December 2013
CreatorsIsrael, Haydi
ContributorsPoitiers, Miranville, Alain, Petcu, Madalina
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0019 seconds