Return to search

Une Théorie des Constructions Inductives

L'objet de cette thèse est la méta-théorie du Calcul des Constructions Inductives (CCI), c'est à dire les Calcul des Constructions étendu par des types et des prédicats inductifs. Le Calcul des Constructions a été présenté en 1985 par Thierry Coquand. Il s'agit d'un lambda-calcul typé qui, à travers l'isomorphisme dit de Curry-Howard, peut-être vu comme un formalisme logique. Ce système qui étend à la fois la logique d'ordre superieur de Church et les systèmes de Martin-Löf est particulièrement expressif du point de vue algorithmique et peut facilement être mis en oeuvre sur ordinateur.<br />Dans le Calcul des Constructions originel, les types de données (entiers, listes, sommes, etc) sont représentés dans le lambda-calcul à travers un codage imprédicatif. Cette solution est élégante mais conduit à un certain nombre de difficultés pratiques et théoriques. Pour y remédier, Thierry Coquand et Christine Paulin-Mohring on proposé d'étendre le formalisme par un mécanisme génerique de définitions inductives. C'est cette extension, utilisée dans le système Coq, qui est étudiée dans cette thèse. Le résultat essentiel est que le système vérifie bien la proprieté de normalisation forte. On en déduit les proprietés de cohérence logique, de confluence et de décidabilité du typage.<br />L'aspect le plus spectaculaire de l'extension par des types inductifs est la possibilité de définir de nouveaux types et de nouvelles propositions par récurrence structurelle (élimination forte). Cette caractéristique, qui donne toute sa signification à la notion de types dépendants, augmente énormément le pouvoir de la règle de conversion, et par là, la difficulté de la preuve de normalisation. L'interprétation de l'élimination forte dans une preuve de normalisation par réductibilité est la nouveauté essentielle de ce travail.<br />De plus, nous considérons ici un système avec eta-conversion. Une conséquence est que la propriété de confluence n'est plus combinatoire et doit être prouvée après la normalisation, ce qui augmente à nouveau la difficulté de la preuve de celle-ci. A ce titre, nous présentons également quelques résultats nouveaux sur des systèmes non-normalisants qui montrent que pour des lambda-calculs typés, la propriété de confluence est logique et non combinatoire.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00196524
Date02 May 1994
CreatorsWerner, Benjamin
PublisherUniversité Paris-Diderot - Paris VII
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 2.1368 seconds