Return to search

Contrôlabilité d'une équation de Korteweg-de Vries et d'un système d'équations paraboliques couplées. Stabilisation en temps fini par des feedbacks instationnaires / Null controllability of a Korteweg-de Vries equation and of a coupled parabolic equations system. Stabilisation in finite time by means of non-stationary feedback

Ce doctorat porte sur trois domaines de la théorie du contrôle : le contrôle par le bord d'une équation de Korteweg-de Vries, le contrôle de trois équations de la chaleur couplées par des termes cubiques et la stabilisation en temps fini de trois systèmes classiques de dimension finie. Pour l'équation de Korteweg-de Vries, on démontre d'abord une inégalité de Carleman en utilisant un poids exponentiel bien choisi, puis on en déduit la contrôlabilité à 0 de l'équation. Pour le système de trois équations de la chaleur couplées par des termes cubiques, on montre la contrôlabilité à 0 globale alors que le linéarisé autour de 0 n'est pas contrôlable. On applique la méthode du retour pour obtenir la contrôlabilité locale : on construit des trajectoires du système de contrôle allant de 0 à 0 et ayant un linéarisé contrôlable. Puis un changement d'échelle permet d'obtenir un résultat global. Enfin, concernant les trois systèmes de dimension finie, il s'agit de systèmes contrôlables mais à linéarisés non contrôlables et qui ne sont pas stabilisables à l'aide de feedbacks stationnaires (continus). On construit des feedbacks explicites dépendant du temps conduisant à une stabilisation en temps fini. Pour cela on s'occupe de différentes parties du systèmes pendant différents intervalles de temps. / This doctoral thesis focuses on three fields of Control Theory: the control on the edge of the Korteweg-de Vries equation, the control of three heat equations coupled by cubic terms, and the stabilisation in finite time of three classic systems of finite dimension. For the KdV equation, we first demonstrate a Carleman inequality using a well-chosen exponential weight, then we deduce the controllability at zero of the equation. For the system of three heat equations coupled by cubic terms, we show the global controllability at zero even though the linearized system around zero is not controllable. We apply the return method to obtain local controllability: we build control system trajectories going from zero to zero and whose linearised systems are controllable. Then a scale change allows us to obtain a global result. Finally, concerning the three systems of finite dimension, these systems are controllable systems but the linearised systems are not controllable and are not stabilised with means of continuous stationary feedback. We construct an explicit time-dependent feedback leading to a stabilisation in finite time. For this we deal with different parts of systems during different intervals of time.

Identiferoai:union.ndltd.org:theses.fr/2016PA066277
Date14 November 2016
CreatorsGuilleron, Jean-Philippe
ContributorsParis 6, Coron, Jean-Michel, Guerrero Rodriguez, Sergio
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0016 seconds