Return to search

Assessing the Effect of Prior Distribution Assumption on the Variance Parameters in Evaluating Bioequivalence Trials

Bioequivalence determines if two drugs are alike. The three kinds of bioequivalence are Average, Population, and Individual Bioequivalence. These Bioequivalence criteria can be evaluated using aggregate and disaggregate methods. Considerable work assessing bioequivalence in a frequentist method exists, but the advantages of Bayesian methods for Bioequivalence have been recently explored. Variance parameters are essential to any of theses existing Bayesian Bioequivalence metrics. Usually, the prior distributions for model parameters use either informative priors or vague priors. The Bioequivalence inference may be sensitive to the prior distribution on the variances. Recently, there have been questions about the routine use of inverse gamma priors for variance parameters. In this paper we examine the effect that changing the prior distribution of the variance parameters has on Bayesian models for assessing Bioequivalence and the carry-over effect. We explore our method with some real data sets from the FDA.

Identiferoai:union.ndltd.org:GEORGIA/oai:digitalarchive.gsu.edu:math_theses-1012
Date02 August 2006
CreatorsUjamaa, Dawud A.
PublisherDigital Archive @ GSU
Source SetsGeorgia State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMathematics Theses

Page generated in 0.0022 seconds